论文部分内容阅读
                            
                            
                                光催化分解水是解决当前能源危机和环境问题的一个理想途径,借助太阳光的能量与半导体光催化材料,水可以被直接分解成氢气和氧气。光催化分解水的关键是开发合适的半导体材料,在过去的数十年里,人们对金属氧化物半导体光催化材料进行了深入的研究。然而,金属氧化物较大的带隙使得大多数金属氧化物光催化材料只有紫外光响应。由于太阳光谱中约43%的能量由可见光组成,研究开发具有可见光响应的光催化材料势在必行。近年来,氮化物光催化半导体材料受到广泛关注,氮化钽(Ta3N5)作为其中的佼佼者更引起了研究者们浓厚的兴趣。由于Ta3N5较小的光学带隙(约2.1eV)和合适的带边位置,使其理论的最大太阳能产氢效率高达15.9%,说明Ta3N5是未来工业化应用中非常有潜力的光催化材料。从理论角度看,Ta3N5的价带顶和导带底将水的还原和氧化势能夹在中间,说明Ta3N5是可以直接分解水产氢气和氧气的,但实验发现Ta3N5的产氧气能力尚可而产氢气能力很差。有工作提出Ta3N5中的缺陷是造成该现象的一个可能原因,但究竟是哪些缺陷,以及这些缺陷如何影响Ta3N5的产氢气能力仍不清楚。本论文的研究目的正是致力于解决这些问题。以第一性原理计算为研究手段,我们对Ta3N5中的各种缺陷进行了系统的研究,揭示了各种缺陷的物理本质及其对Ta3N5产氢气能力的影响。并且,基于对Ta3N5中缺陷问题的深刻理解,本论文还有针对性地提出了改善Ta3N5产氢气能力的一种可行的方法。整个论文包含了六个章节:在第一章中,我们首先对论文的背景做了介绍,然后对近年来Ta3N5在实验和理论计算方面的研究进展进行了综述。最后,我们阐述了本论文的研究动机并对全文的内容做了概述。在第二章中,我们对第一性原理的背景做了介绍,重点介绍了密度泛函理论的发展历程以及本论文使用的具体计算软件。另外,由于理论计算与实验工作的差异,我们还详细讨论了如何在第一性原理计算中保证计算结果的可靠性。在第三章中,我们研究了体相Ta3N5中的各种缺陷,重点研究了Ta3N5中的氮空位和氧杂质这两种缺陷。通过形成能、缺陷转变能级以及电子结构的计算,我们发现氮空位和氧杂质在Ta3N5中都是电子给体并且它们的缺陷转变能级都很浅。氮空位和氧杂质电离出的电子都能将Ta3N5中的+5价Ta还原成低价Ta,这导致Ta3N5的导带底位置下降从而降低Ta3N5还原水产氢气的能力。另外,我们还系统研究了氧杂质对Ta3N5的光学带隙大小和带边位置的影响,所得结果与实验符合很好。在第四章中,我们通过水在纯净的、含有氧杂质的以及含有氮空位的Ta3N5(100)面上的吸附和解离来研究Ta3N5的表面性质。结果表明,纯净的Ta3N5(100)面含有悬挂键,使其具有较强的分解水的能力。相比之下,氧杂质在Ta3N5(100)面上可以降低表面能从而提高Ta3N5(100)面的稳定性,但含有氧杂质的Ta3N5(100)面吸附和分解水的能力较差,这可能是氧的存在饱和了表面悬挂键所致。含有氮空位的Ta3N5(100)面虽然分解水的能力很强,但氮空位的存在降低了Ta3N5(100)面的稳定性。在第五章中,基于对Ta3N5中缺陷本质的理解,我们认为元素补偿共掺是提高Ta3N5产氢气性能的一个可能的办法。通过计算M-O(M=F,Cl,Ti,Zr,Hf,Ge,Sn)共掺Ta3N5的形成能、表面能和电子结构,我们发现元素F,Ti,Zr和Hf分别与氧共掺理论上可以提高Ta3N5的导带底位置,从而提高Ta3N5还原水产氢气的能力。我们提出的方案对于今后Ta3N5的实验研究具有很好的指导意义。最后,在第六章中我们对全文的主要结论做了总结,同时对将来可以继续进行的工作给出了建议。