【摘 要】
:
原油破乳是油田生产中的重要环节,通常施加高强电场可促进油中水滴发生聚并,加速油水分离。然而,驱油药剂的存在将改变液滴界面的动态响应,致使液滴间难以发生聚并,电脱水器的脱水效率降低。目前经典的静电聚并理论难以阐明这一科学问题来指导工业生产。本文通过微观实验研究了直流电场作用下油中水滴的聚并准则与界面特征演变规律,揭示了复杂液滴发生不聚并的微观机理以及聚并过程中的界面响应规律,主要研究内容和结论如下:
论文部分内容阅读
原油破乳是油田生产中的重要环节,通常施加高强电场可促进油中水滴发生聚并,加速油水分离。然而,驱油药剂的存在将改变液滴界面的动态响应,致使液滴间难以发生聚并,电脱水器的脱水效率降低。目前经典的静电聚并理论难以阐明这一科学问题来指导工业生产。本文通过微观实验研究了直流电场作用下油中水滴的聚并准则与界面特征演变规律,揭示了复杂液滴发生不聚并的微观机理以及聚并过程中的界面响应规律,主要研究内容和结论如下:研究了物性参数和电场强度对液滴临界聚并条件的影响,发现在电场作用下油中水滴受到极化相互靠近、碰撞,随后存在三种行为:聚并、不聚并、聚并-分裂,液滴的聚并角度βc是决定液滴能否发生聚并的核心参数。通过大量微观实验数据,分析得到了电导率、界面张力、粒径和电场强度对液滴聚并-不聚并临界条件影响的相图。研究结果表明可通过调整碱和表活剂含量,促使液滴从不聚并区域向聚并区域转变,可用于指导电脱水器的设计和运行参数的优化。重点分析了界面张力和电场强度对相同粒径液滴聚并界面特征的影响,证明了相同粒径液滴的聚并过程中内部流场和压力场成对称分布。在本研究中液桥直径的增长符合连续相粘性控制定律,不同表活剂浓度下液桥直径与无量纲时间(t/τ)0.5成正比关系,且符合同一线性规律,表活剂分子在液滴界面和体相中的运移扩散会增加液滴的聚并时间。不同Ca数下液桥直径的增长与无量纲数(t/(τtanα0))0.5成正比关系,且随着Ca数的增加斜率逐渐减小,证明了液滴的初始接触角度α0是Ca数影响液滴聚并时间的根本原因。针对电场作用下不同粒径液滴的聚并过程进行了分析,发现液桥的增长方向向较小液滴倾斜,并伴随有“蘑菇头”射流。液滴粒径比增加加剧液滴聚并不对称性的增加,液桥直径与液桥角度逐渐偏离线性关系。液滴聚并时间随着液滴粒径比的增加和表面活性剂浓度的减小而增加。在液滴聚并过程中,“蘑菇头”射流的宽度逐渐增加,速度逐渐减小,但射流的流量基本保持不变。随着粒径比的增加和表活剂浓度的减小,液滴间毛细压差增加,将导致射流流量增加。实验结果表明可通过预处理乳状液,优化粒径分布和降低表活剂浓度来实现更高的聚并效率。
其他文献
聚甲氧基二甲醚(PODEn)是一种含氧量较高的化合物,近年来更是发展为一种优质的柴油添加剂。目前PODEn的生产原料主要为甲醛、甲醇、甲缩醛和多聚甲醛等,反应产物中含有未反应完全的甲醇、甲醛等物质,为获得较高纯度的目标产物(PODE2-5),需要采用精馏分离技术将副产物和未反应完全的原料与目标产物分离开来。然而目前可查的相关汽液平衡数据并不多,三元体系的基础数据更少,尤其是对于含甲醛体系的三元体系
随着社会经济的发展,印染行业发展迅猛,大量印染废水不达标排放导致我国水体环境大面积受到不同程度的破坏。印染废水具有水量大、水质不稳定、含有的有机污染物浓度高、色度高等特点,传统的物理、化学、生物处理方法因各自存在的缺点而无法达到预期处理效果。为高效环保的处理印染废水,本实验采用陶瓷基动态膜技术与芬顿氧化技术耦合新工艺来处理印染废水。本实验首先以蒸馏水为过滤料液,对陶瓷基膜载体的渗透性能进行研究,考
游梁式抽油机是我国油田开发生产的主要设备,针对其倒发电现象,中压直流供电的油井节能群控系统应运而生,其取消了单井节能控制中的多台交-直-交变频控制柜整流部分,共用一套整流器通过直流母线统一供电,通过公共直流母线供电与终端控制变频技术的结合,实现了多台抽油机的倒发电能量的互馈共享和循环利用。油井原由三相1140VAC供电,现经整流后母线上电压接近1600V,而油井逆变控制柜中的核心控制板、PLC等二
随着海上油气田工程的不断开发和扩展,海上单平台独立供电模式逐步被海上互联电力系统联合供电模式所取代,分析海上互联电力系统的静态安全性对油气安全生产具有重要意义。在综述大电网和微网静态安全性分析研究现状的基础上,结合海上互联电力系统的自身特点对海上互联电力系统的静态安全性进行分析。潮流计算是静态安全性分析的基础,首先针对海上互联电力系统源-荷特点,引入频率、转差率与电压幅值、相角一起作为潮流状态变量
近年来,我国城市大气污染超标严重,区域型、复合型大气污染日益突出,大气总体形式严峻,城市间相互污染影响较为显著,大气重污染现象频发。以细颗粒物、臭氧、酸雨为特征的二次污染呈加剧态势。挥发性有机物(VOCs)作为臭氧(O3)和细颗粒物(PM2.5)的共同前体物正逐步地得到包括环境保护主管部门、专家以及公众的关注。VOCs物质种类繁多,不仅造成大气环境污染,还具有有毒有害性、破坏臭氧层及使全球变暖的作
含蜡原油管道设计与运行的核心问题之一是如何确保管道停输后再启动的安全性。含蜡原油的胶凝特性、压缩特性以及屈服特性对管内含蜡原油的结构恢复与启动特性研究具有重要的意义。同时压缩系数和压力波速是计算管道再启动水力过程的关键参数,而目前针对在环道运行过程中直接测量的研究较少。本文自行设计并在管流环道装置的基础上搭建超声波测试系统,将超声波特性与管道压力变化规律相结合,从新的角度对原油管道动态降温、停输及
石油作为能源中的重中之重,是国民经济战略发展的命脉,石油开采技术的发展以及石油产量的提高已经成为解决世界能源危机的主要途径。然而,目前油田中大规模采用的地面抽油机普遍存在系统效率低、稳定性差等问题。为了有效解决上述问题,潜油直线电机抽油机应运而生,通过置于井下的直线电机带动抽油泵柱塞上下往复运动实现举升抽油的目的,省去了地面抽油机、抽油杆等中间环节,提高了抽油效率,是传统抽油机的重大变革。本文根据
我国成品油管道运行期间经常发生由于杂质堵塞设备导致的管道停输事故,例如兰-成-渝成品油管线、齐-宿成品油管线、青-济-邯成品油管线等。对兰-成-渝成品油管道中的堵塞物取样分析,腐蚀产生的铁的氧化物约占70%,其余为管道施工时存留的石子及焊渣。随着管道的运行,清管杂质中氧化铁的量并未随清管操作的不断进行而显著减少。由此可见,杂质中的氧化铁不仅来源于施工期间管道暴露于大气中产生的浮锈,也来源于管道的内
本文针对双馈风力发电机(DFIG)的传统励磁系统的不足,同时对网侧变换器和转子变换器进行优化。对于转子侧变换器,通过对准Z源变换器拓扑结构合理地改造,构建了基于准Z源变换器的DFIG的励磁系统,并对其控制策略和低电压穿越能力进行了深入分析;对于LCL滤波的网侧变换器,提出了部分电容电流前馈的变换器侧电流反馈控制方案,以应对电网电压畸变造成的并网电流谐波问题。针对低电压跌落问题,对DFIG的运行状态
化石燃料的枯竭及生态环境的恶化已成为21世纪人类面临的严峻挑战,新能源技术的开发与应用成为了解决此类问题的有效途径。其中,电催化作为新能源技术开发的重要发展方向,受到当代科研工作者们的广泛关注。近些年来,石墨烯由于其独特的层状结构和优良的电化学性能成为国内外研究的热点,随着石墨烯研究的快速发展及材料制备技术的不断革新,其它具有二维层状结构的材料,如过渡金属硒化合物,因其具有优异的催化活性,低廉的价