【摘 要】
:
随着数字媒体技术的普及和计算机视觉领域的快速发展,平面目标跟踪作为一种重要三维跟踪技术已被广泛应用于三维重建、军事制导以及无人机等多个技术领域。尽管众多研究者在该领域已经取得了丰硕的研究成果,但仍存在诸多问题尚未解决。例如,在背景复杂或者在视点快速移动的场景中,视频图像中纹理重复或者缺失会导致所提取的关键点特征信息不准确;超出视野或遮挡等场景容易造成基于区域的方法失效;视点快速移动则会引起跟踪目标
论文部分内容阅读
随着数字媒体技术的普及和计算机视觉领域的快速发展,平面目标跟踪作为一种重要三维跟踪技术已被广泛应用于三维重建、军事制导以及无人机等多个技术领域。尽管众多研究者在该领域已经取得了丰硕的研究成果,但仍存在诸多问题尚未解决。例如,在背景复杂或者在视点快速移动的场景中,视频图像中纹理重复或者缺失会导致所提取的关键点特征信息不准确;超出视野或遮挡等场景容易造成基于区域的方法失效;视点快速移动则会引起跟踪目标产生较大程度的形变,导致图在匹配过程中误差增大。现有算法仍远不能满足复杂实际场景中的准确性和鲁棒性需求。传统平面目标跟踪算法主要分为基于关键点、基于区域和基于图三类方法,但它们都存在着一定的局限性。大部分基于关键点的方法都忽略了平面目标的结构信息且都相当依赖图像中像素的梯度信息;基于区域的方法在缺少目标结构信息时可能会出现跟踪失效;基于图的方法在纹理丰富的场景中,特征点提取偏差会影响局部特征创建而使得跟踪不够稳定。由于深度学习能更准确地提取目标深度特征,目前已广泛应用于目标检测、识别以及跟踪任务,显著提高了检测、识别以及跟踪的准确率。然而,目前基于深度的平面目标跟踪研究相对较少。基于此,本文提出了一种利用卷积神经网络估计单应性矩阵的平面目标跟踪算法,并以此为基础提出了一种基于孪生神经网络的单应性矩阵估计改进算法。主要内容包括:(1)本文提出了一种使用卷积神经网络提取特征并通过对单应性矩阵进行回归估计的平面目标跟踪方法。为减小直接估计单应性矩阵的难度,该算法通过归一化减少单应性矩阵的自由度,并用四点参数化代替单应性矩阵参数估计,实现了平面目标跟踪。(2)为了减小累积误差带来的影响,本文利用孪生神经网络提取特征并进行单应性矩阵估计,提出一种基于孪生神经网络的改进算法。该算法使用相似度度量将检测和跟踪两个过程结合起来。孪生神经网络的两个分支分别提取模板帧和目标帧的特征,然后运用锚点框机制在所提取的特征图上产生大量矩形区域并对其进行排序。该算法将平面目标跟踪划分成分类和回归两个任务同时进行,对矩形区域进行分类后,利用余弦窗和尺度惩罚对矩形区域重新进行排序并使用非极大值抑制算法进行筛选,最后,对筛选出的结果进行回归微调。融入检测过程后,较好地改善了由累积误差引起的目标跟踪失效现象,同时提高了平面目标跟踪的准确度。(3)本文采用公开数据集上包括旋转、缩放、遮挡、透视和超出视野五种影响因素的数据样本对所提出的两种算法进行了量化对比,并将所提出的基于孪生神经网络的算法与本领域目前几种具有代表性的算法进行了实验对比。论文从视觉效果和量化数据两个方面呈现和分析了所提算法的实验结果。实验数据验证了本文算法的有效性和准确性。
其他文献
科学技术的发展带来了机器人技术的革新,从最初的只能示教再现的机器人,到具有初步感知编程能力的机器人,再到如今高度智能化的机器人,机器人技术经历了飞速发展的60年。如今,机器人在工业生产中扮演着重要的角色,展现出了巨大的发展前景。尽管机器人技术进步飞速,但六轴机器人的轨迹规划一直是一个难题,末端执行器在运行空间直线,空间圆弧等轨迹时,仍然会有描述轨迹的计算量过大,关节轴冲击过大和运行时间过长等问题,
SDN(Software Defined Network)是一种新型的网络架构,解耦控制平面与数据平面,实现网络的集中控制,有效解决了传统网络配置复杂、设备管理困难等问题,能更好的实现全局优化。但随着网络规模的不断扩张,单控制器部署有限的处理能力以及易出现单点失效等问题,已成为整个SDN网络的瓶颈。因而多控制器部署已成为必然趋势。但由于网络流量具有时变性和突发性,极易引发控制平面负载不均衡,致使网
叶片是航空发动机、燃气轮机等动力机械中的重要零件,其型面的加工质量严重影响着整机的工作性能,因此对其型面轮廓进行检测是十分必要的。叶片型面一般为变截面的扭转曲面,同时型面曲率变化较大,具有较大的检测难度。传统三坐标测量法通过获取叶片型面特定截面的轮廓数据评价出叶片加工质量,适用于精加工叶片的检测,无法反映出叶片整体的尺寸偏差,同时对检测环境具有较高的要求,无法实现叶片在线检测。随着光学测量技术的发
由于航空发动机机体结构复杂,具有拆装难、维修不易的特点,新手操作者对各种发动机零件类型的不熟悉,在航空发动机换发领域存在培训难上手、实践成本高等问题,因此,常利用目标检测方法对零件类型进行分类检测。但由于实际环境中零件堆放杂乱,容易出现遮挡的情况,利用传统的单一目标二维识别方法会因为无法提取足够的特征信息,易出现错误的检测结果,无法满足需求;同时,传统的换发培训流程是基于纸质或电子文档,培训效率较
随着网络规模的增大和新型网络应用的不断出现,网络流量呈指数级增长,如何根据网络的状态和需求找到一种实时的自适应的智能路由是提高网络资源利用和服务质量的关键。SDN(Software Defined Networks)的出现提供了灵活高效的网络控制,降低了路由优化的难度。数据驱动的方法适应并优化了网络的实际状态,随着机器学习在很多领域取得了非常不错的进展,许多研究者开始尝试使用机器学习来解决路由优化
三维人脸重建技术逐渐开始受到学者们的关注并在安防、医疗美容、影视娱乐等多个领域进行应用。目前三维采集需要通过昂贵的专业三维采集设备且需要较长的采集时间,而基于单张照片的三维人脸重建技术具有只需要用手机就能对人脸进行采集的优点。目前基于二维人脸照片进行三维人脸重建的算法生成三维人脸模型不能很好的表示人脸的细节信息,如皱纹等。对于以上问题,本文提出一种利用卷积神经网络对单张人脸照片重建出具有细节信息的
近年来随着5G、云计算、物联网的快速发展,各种网络应用层出不穷,网络规模不断扩大,网络流量爆发式增长。如何通过对网络流量的合理调度,避免网络拥塞,提高网络资源利用率,保证用户体验质量,越来越成为网络领域需要重点研究的问题。随着SDN网络架构的提出和对网络数据收集、分析能力的增强,再加之深度学习与深度强化学习在自适应学习、自动控制等领域的突破性进展,为可实时适应网络变化的动态、智能流量调度方法的实现
飞行模拟机在民航飞行员及相关从业人员的培训中具有极其重要的作用,可以显著的降低训练成本和提高训练安全性。飞行教员带领学员使用模拟机训练,一般按照训练清单进行逐项练习,根据训练大纲和个人经验对学员的表现进行评分,随后根据学员的分数安排后续训练。但是面对大量的考核项目,教员的评分容易受到疲劳和个人主观因素的影响,由此造成的评估偏差不利于受训人员水平的提高,造成大量的人力物力损失。现有解决此类问题的方法
在人脸识别领域,由于人脸数据易于获取的特点,使得人脸识别系统容易受到演示攻击,所以需要利用人脸活体检测技术对演示攻击进行防御。人脸活体检测技术通过检测并过滤伪造的攻击图像,达到抵御攻击的目的,从而避免人脸识别系统被攻破而造成的不必要的损失。本文首先从人脸活体检测数据集开展研究,针对现有数据集存在的一些问题,提出了一种多模态人脸活体检测数据集构建方案。然后在此基础上对基于深度学习的人脸活体检测算法进
飞行模拟机是用于训练飞行过程的产品,系统通过逼真地模拟,提供一个接近真实的飞行训练环境,达到训练飞行驾驶操作的目的,系统主要由飞行系统、飞机系统和视景系统等组成。其中,视景系统需要极高的实时交互性和稳定性,而视景系统中大量三维模型数据处理及各种视景特效处理算法都极其消耗系统存储资源和计算资源,这大大影响了系统的实时性与稳定性,给视景渲染带来了极大压力。虽然目前的显卡在硬件级别上能对三维渲染进行一定