论文部分内容阅读
基于热功转换的传统能源生产方式受到热力循环最高参数的限制,无法有效利用高温燃烧能量;因此,以能量品质匹配原则为基础构筑燃烧光热能量分级转化系统是实现能源高效利用的一项重要技术思路。富氧燃烧既是一种控制CO2排放的关键技术,又能够产生具有较高利用价值的高温燃烧辐射能。因此从能质匹配利用角度研究富氧燃烧辐射能特征及相应的富氧燃烧光热能量分级利用系统则具有重要的意义。本文按照富氧燃烧单色辐射能效评价理论→高效高精度宽范围富氧燃烧气氛辐射总体模型开发→富氧燃烧辐射能量特征理论分析→富氧燃烧辐射能量特征实验探究的研究路线对富氧燃烧热辐射能量利用的关键问题进行研究,最后构筑了基于富氧燃烧的光热能量分级转化系统并进行参数分析。为了合理评价富氧燃烧高温辐射能量品质,首先建立了能够表征光谱辐射可用能的辐射热力学理论。在讨论了黑体辐射?的几种表达式基础上,从辐射能和热能不同的观点出发建立了辐射机模型,证明了Petela黑体辐射?公式的有效性。基于辐射等效温度的概念,通过建立无限分级卡诺热机模型,提出了积分形式的单色光子?表达式;同时给出了等效温度与辐射波长之间的近似关系。最后,利用无限分级卡诺热机模型讨论了单色光子的熵,并给出了积分形式的光子熵的表达式。并验证了单色光子的熵和?之间满足热力学关系,可以反映辐射能和热能之间的差异。详细总结灰气体加权(WSGG)模型的开发理论及步骤,并改良WSGG模型结构使其能够兼容更宽压力范围的参数。以EM2C实验室的统计窄谱带(SNB)模型作为基准,开发出适用三种典型压力条件下的富氧燃烧特性的WSGG模型系数。将该改进模型同时应用于一维和二维算例,以验证其准确性。结果发现改进模型的结果与基准模型的结果非常吻合,从而说明改进模型的合理性。在此基础上,又进一步开发了适应更宽参数范围H2O/CO2混合气氛的改良WSGG辐射模型参数,新模型可适用于0.1-3 Mpa范围,其温度范围为500-2500K,行程长度为0.001-60 m,H2O/CO2摩尔比范围为0.125-4。新的WSGG模型可适应多种燃料以及多数燃烧设备的燃烧条件。此外,还基于新模型深层次地研究压力对混合气体辐射传热的影响。发现在高压条件下,新的WSGG模型计算的混合气体发射结果与基准模型结果吻合较好,一维算例在1 m行程长度下的平均源项误差最大不超过4%,平均热流误差最大值仅在3%左右;鉴于常压下WSGG模型则不能取得很好效果,因此宽范围新模型的建立是很有意义的。研究还发现在一定的压力范围内,压力增大能增强H2O/CO2混合气体的辐射换热,存在一个强化混合烟气辐射换热的最佳的压力。同时,压力对低H2O/CO2摩尔比值混合烟气辐射强度影响更大。基于热力学第二定律,将单色辐射光子可用能理论与辐射传递方程相结合,建立了基于热力学第二定律的单色辐射熵及辐射?传递方程,可用来更加合理准确的计算及分析单色光谱辐射传递过程中的能量品质及变化,通过理论及数值验证发现辐射熵与辐射?传递计算之间符合热力学规律。在此基础上,通过构建一维炉膛燃烧介质辐射算例,计算燃烧介质辐射能量特征。探究温度,气体摩尔比,压力,行程长度以及颗粒粒子数密度等参数对光谱辐射能及光谱辐射?比例分布的影响。结果表明,在各个工况条件下,光谱辐射能量占比特征与光谱?占比特征一致,可以使用光谱能量的分布特征来预测光谱?的分布特征。影响辐射能量光谱分布特征的主要参数是温度。基于改造的管式炉燃烧平台,对煤粉富氧燃烧辐射能流特征进行了实验研究。探究了温度,氧气浓度,气氛以及煤种等因素对辐射能流特性的影响,并基于本文开发的辐射热力学理论探究辐射?规律。结果发现温度及氧浓度的增大使得煤粉燃烧的辐射功率增大,波长4.1μm以下的短波段辐射占比增加,而温度的影响更明显。辐射?功率的变化趋势与辐射功率基本一致。煤种及氧浓度对?能比的影响不太大,主要因素是温度。而通过构建一维算例能够预测光谱能量占比。基于自行搭建的平焰燃烧器实验平台,实验研究了半焦射流火焰的光谱辐射能量特征,并基于辐射热力学理论研究了辐射?分布规律。结果发现高温及高氧浓度直接增强辐射强度。其他条件不变的情况下,O2/CO2气氛中辐射强度较低。平焰燃烧器实验中不同工况下能量比例分布基本符合灰体分布规律,1400°C左右,1.1-3μm波段辐射占比达60%,可通过构建一维算例预测。不同工况的辐射?比例分布结果与辐射能量比例分布结果类似。基于中试试验台的实验结果显示,固体燃料纯氧燃烧产生类似于灰体的光谱。计算获得的光谱辐射?较大并与光谱辐射能分布特征相似。纯氧燃烧可产生2000 K以上的高温,具有极高的能量品质。该温度下由于传统的热力循环最高参数的限制则造成较大程度能量品质损失,光热能量分级利用的思路对纯氧高温燃烧更加关键。最后在总结燃烧光热能量分级利用的理论及原则的基础上构筑了直接利用火焰能量的富氧燃烧光热能量分级转化系统,以及基于光谱调节的富氧燃烧热光伏-布雷顿-朗肯联合循环光热能量分级转化系统(TBRC)。对于直接利用火焰能量的富氧燃烧光热能量分级转化系统,通过建立热力学分析模型并基于富氧燃烧辐射能量特性实验数据分析系统的性能。模拟结果表明相比不添加光伏装置的基本朗肯循环,理想条件下,随着光伏比例的增加能够提高系统效率约13个百分点。新系统中锅炉?损(60%左右)远大于朗肯循环(7%左右),光伏板的加入主要降低了锅炉传热?损,从而降低系统?损,提高系统效率。直接利用火焰能量的富氧燃烧光热能量分级利用系统中,对于不同燃煤,使用无烟煤与烟煤系统效率较高,而褐煤最差。基于光谱调节的富氧燃烧光热能量系统(TBRC),使用热光伏装置来对燃烧辐射能量进行光谱调节,从而进行光电转化。通过构建热光伏,布雷顿朗肯联合循环等子系统模型,对150 kW小系统进行模拟分析研究。结过表明该系统效率相比同容量热动力循环可提高20个百分点。21%O2/N2燃烧气氛条件下的系统最佳功率接近于30%O2/CO2左右的条件的功率;氧气浓度对系统功率的影响在O2/CO2燃烧气氛下更大一些。基于480 MW的高参数高效率燃气蒸汽联合循环系统所构筑的富氧燃烧光热能量分级系统在纯氧燃烧条件下理论最高效率可达86%,相比于空气燃烧的联合循环机组提高了26个百分点,这体现了富氧燃烧光热能量分级利用系统的发展潜力。