论文部分内容阅读
采用同轴相对论返波管(CRBWO)是提高高功率微波(HPM)输出效率的有效技术手段。本文通过理论研究、工程工艺研究和实验研究,对同轴相对论返波管进行了系统性研究,证明其在提高输出效率方面的优势和可行性。理论研究表明,同轴慢波结构(SWS)谐振性较好,参加波束作用的纵向模式范围比常规空心慢波结构宽,因而起振较快,起振过程受模式竞争干扰严重。在400 keV ~ 800 keV范围内,起振电流随电子动能升高而增大。波束作用研究发现,较之常规空心相对论返波管,同轴相对论返波管的场分布更有利于波束作用,并且通过合理选择慢波结构两端反射,预测输出效率接近40%。设计方案根据波束作用有效程度和所需工作频率,合理选择结构参数并优化设计两端反射。器件工作在准TEM模式前向波区域,输出频率7.33 GHz,位于近π模式。在二极管电压和电流为508 kV和3.97 kA时,输入功率2.02 GW,输出功率754 MW,输出效率37%。场分布研究表明,器件内部场强最大点在输出功率达到GW量级时约为1.4 MV/cm,极易导致二级电子发射和表面击穿。为提高功率容量,对器件进行一系列表面处理,并采用无油真空。为了保证良好的同轴度,设计了结构精密的环形支撑。并根据同轴相对论返波管狭缝阳极的特点,设计了更有利电子束流预调制的反射腔,将转换效率提高到43%。实验采用在线探针和量热计进行测量诊断。同轴探针在7.40±0.10 GHz范围内耦合度标定曲线很平坦,中心频率7.4 GHz时耦合度为κ= -42.15dB。全吸收量热计吸收效率大于98%,且受频率影响不大;入射功率GW量级时表面最大场强降低至38 kV/cm。实验研究中得到的结构参数对输出的影响规律与数值模拟规律符合很好。当器件工作在最佳状态时,二级管电压和电流分别为498 kV和4.28 kA时,电子束流脉宽28 ns,输出功率733 MW,输出效率34.4%,微波脉宽20 ns,频率7.40 GHz,与数值模拟结果符合很好。实验发现经过提高功率容量的措施,输出幅度升高,脉宽增加。估算得到表面镀有氮化钛的同轴相对论返波管器件,当表面场强超过1.2 MV/cm时有可能引起表面场致发射。