氮分子在铜单晶表面Cu(111)上的吸附—脱附

来源 :华中师范大学 | 被引量 : 0次 | 上传用户:lg97060329
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在这篇论文中我们描述了一个计算从单晶表面重组脱附分子动能分布和角分布的新模型。用这个模型,我们分析了从Cu(111)铜单晶表面脱附分子韵动能分布和角分布。用计算脱附分子动能分布的计算拟合参数,我们得到脱附过程中释放到氮分子的能量分布,分布的范围从2.0eV至6.0eV,释放到脱附氮分子的平均能量大约是4.0eV。而用密度函数理论计算的氮在清洁Cu(111)面上的吸附能垒大约是6.0eV。根据细节平衡原理,在脱附过程中释放的能量应该等于吸附能垒,对于密度函数理论计算的吸附能垒与脱附过程中释放的能量差异有两种可能的解释。第一种解释是在表面重组脱附过程中,脱附分子会选择能垒较低的途径,也就是说脱附事件优先发生在表面缺陷或台阶处,脱附地方发生在表面平台处的概率相对较低。因此,我们可以认为在计算的能量释放分布图高端(6.0ev)对 应从平台处脱附,低端(2.0ev)对应从表面缺陷或台阶处脱附。另一种解释是密度函数理论计算的吸附能垒是氮分子在清洁Cu(111)的吸附能垒,而脱附不是发生在清洁的表面上。脱附的表面已经有一些吸附的氮原子,这些吸附的氮原子对吸附能垒有显著影响。如果一个氮分子从清洁的Cu(111)表面脱附,那么在脱附过程中释放的能量应该近似等于计算的吸附能垒。 振动激发的分子的动能分布与振动基态的分子的分布差别很小,因此对于N<,2>/Cu(111)体系,振动激发态对吸附能垒的影响不显著。另外,在脱附过程中,吸附能垒不仅会沿垂直于表面方向释放能量,而且沿平行于表面方向也会释放能量。
其他文献
光子晶体,是一种由介质或金属周期排列而形成的人工材料。正如有电子禁带存在的硅材料是现代电子工业得以蓬勃发展的物质基础一样,具有光子禁带的光子晶体将为光子学的发展开创
雷达测速法是近年来使用的一种新方法。本文首先介绍了多普勒测速雷达的工作原理,并且对其测速中的误差来源和大小进行了分析,最后得出了测速精度。  外差探测激光多普勒雷达
本论文以层状钙钛矿结构铁电材料SrBi4Ti4O15(SBTi)和Bi4Ti3O12-SrBi4Ti4O15(BIT-SBTi)共生结构为研究对象,研究A、B位掺杂对材料的晶体结构、铁电和介电性能的影响,分析了掺杂
氟化类金刚石薄膜(FDLC)是基于传统类金刚石膜的基础上发展起来的一种改性材料,该膜具有许多比金刚石薄膜更加良好的性能,因此引起了人们的极大关注。深入研究掺氟量以及工艺条件改变对FDLC薄膜性能的影响有很重要的现实意义。本文采用等离子体增强化学气相沉积法在抛光的硅片和玻璃片上制备了氟化类金刚石薄膜,反应气体选用CF_4、CH_4和Ar,并对制备的薄膜进行了退火处理。利用椭偏仪测量薄膜的厚度,用俄歇
(1)GeSi量子点在初始Si覆盖下的形貌转变 最近研究发现,当生长在Si衬底上的GeSi量子点在薄的Si层覆盖下,这些量子点的形貌可以发生转变,从而实现不同结构和形状的半导体纳米
本文第一章对沸腾换热及多孔介质等基本概念做了简要介绍,然后,综述了沸腾换热及分形几何理论的发展和一些基本理论基础。本文第二章介绍了大空间临界热流密度的传统模型,并进行
作为可调谐光子器件及高性能传感器的光纤内马赫泽德干涉仪(Mach-Zehnder interference,简称MZI),具有结构简单紧凑、抗电磁干扰、分辨率高、可调谐性以及极高的传感灵敏度等优势,引起了国内外广泛关注。近年来,报道的光纤内马赫泽德干涉结构的制备技术主要包括:光纤拉锥,微腔刻蚀以及光纤熔接等,制备出的MZI能够实现纤芯模式之间的干涉以及纤芯和包层模式的干涉。其中,基于双开口微腔结构
随着对声子晶体研究的深入,基于声子晶体缺陷态的声学应用成为学术界的研究热点。通过向晶体中引入缺陷,可以在其带隙内获得传播模式或共振模式的缺陷态,利用缺陷态可以设计实现多种声学应用。本文以包含缺陷的声子晶体为研究对象,利用缺陷态与传播模式的耦合关系,实现了声波分束以及定向辐射;利用点缺陷对称模式的奇偶性,设计了两类声单向传输装置。主要研究内容及结果如下:在第二章中,系统研究了两种声子晶体线缺陷中声波
过去二十多年,声子晶体由于其操控声波/弹性波的能力而被广泛关注。近年来,声表面波人工结构和亚波长尺度的声超常材料也逐渐地成为了研究热点。基于声人工结构的各种新型声波功能应用与器件得到了空前的发展,这些器件在未来的集成声学中有着广泛的应用前景。最近,利用声人工结构调控下的声波操控物质微粒也成为了研究重点。本文采用多重散射理论和有限元法进行数值模拟,设计了三种新型的声子晶体功能器件,以及研究了声学人工
古斯-汉欣 (Goos-Hanchen,简称GH)位移指的是反射光的实际反射点和入射点(也即几何光学反射点)有一段距离的偏移的现象.这是由于入射光中不同的单色平面波分量具有不同的反射