论文部分内容阅读
随着淡水养殖业快速发展,养殖塘对大气CH4和CO2的贡献成为全球温室气体循环研究中的热点问题。作为世界上最大的淡水养殖国家,中国占全球水产养殖产量的58%。池塘养殖作为我国主要淡水养殖方式,占淡水养殖总面积的一半以上,且呈逐年增长的趋势。因此,明确我国淡水养殖塘CH4和CO2排放特征及其影响因素已成为准确估算内陆水体碳排放亟待解决的科学问题。本研究选取位于长江中下游地区的安徽省一处典型的淡水养殖塘,基于多通道密闭式动态箱法,在评价密闭式动态箱法对于小型养殖塘温室气体通量观测适用性的基础上,对不同季节养殖塘CH4和CO2通量进行多点连续观测,明确了其时空变化特征及其影响因子,主要研究结果如下:(1)密闭式动态箱观测养殖塘CH4和CO2通量结果的准确性和代表性评价如下:箱体透光性对密闭式动态箱观测结果的准确性具有显著的影响。就CO2通量而言,当CO2呈现排放状态时,暗箱相比明箱会高估85.5%的CO2通量,当CO2呈现吸收状态时,暗箱相比明箱则会低估53.0%的CO2通量。就CH4通量而言,暗箱相比明箱会低估39.4%的CH4扩散通量,而明、暗箱对于CH4冒泡通量的观测结果无显著差异。箱体内外气压差对CO2通量、CH4扩散通量以及冒泡通量准确性的影响均不显著。箱体内气体混合程度对密闭式动态箱法观测CO2通量准确性的影响显著,其中未混合的箱体会高估20.3%的CO2通量。而箱体内气体混合程度对密闭式动态箱法观测CH4通量准确性无显著影响,但为准确区分CH4冒泡通量和扩散通量,保持箱体内气体浓度均一是十分必要的。与涡度相关观测方法观测的结果进行对比,结果表明密闭式动态箱的观测结果能够代表养殖塘CH4和CO2通量。对于CO2通量,密闭式动态箱法保证了观测的CO2通量信号来自养殖塘水体。对于CH4通量,密闭式动态箱法多点观测结果与涡度相关系统观测结果显著相关,同时能够反映养殖塘不同区域CH4通量的空间变异性。基于密闭式动态箱法(保证箱体透明,箱体内外不存在气压差并且箱体内气体混合均一)进行多点观测能得到准确的养殖塘CH4和CO2通量。(2)养殖塘CH4通量的时空变化特征及其影响因素研究发现,养殖塘CH4扩散通量、冒泡通量和总通量在季节尺度上均呈现出:夏季>春季>冬季>秋季的特征。其中,夏、春、冬、秋季节的CH4总通量分别为:2.619、1.036、0.012和0.008μmol m-2 s-1,该养殖塘年均甲烷总通量为0.919μmol m-2 s-1。在各季节中,冒泡均为CH4排放的主要途径,春、夏、秋、冬冒泡通量占总通量比例分别为89.04%、68.29%、78.95%和60.52%,平均为74.14%。在日尺度上,CH4扩散通量和冒泡通量均与水温呈显著正相关,其温度敏感性分别为7.78和12.72,与扩散通量相比,冒泡通量对水温的敏感性更强,在小时尺度上,春季CH4扩散通量与水温呈正相关,与风速呈负相关。秋季CH4扩散通量与水温和风速均呈正相关,冒泡通量和总通量与水温均呈正相关。就空间格局而言,养殖塘CH4总通量、扩散通量、冒泡通量均呈现出明显的空间变化特征。人为管理及离岸距离是CH4通量空间变化的主要影响因素。在没有人工投食和增氧措施的情况下,CH4通量由岸边浅水区向中间区域逐渐增大,冬季中间区域CH4通量是岸边浅水区的34.70倍,春季中间区域的CH4通量是岸边浅水区的2.98倍。在人工投食及增氧措施的影响下,夏季人工投食区CH4通量为自然生长区的3.4倍,人工增氧区CH4通量比自然生长区低58.7%。(3)养殖塘CO2通量的时空变化特征及其影响因素研究发现,养殖塘CO2通量呈现明显的昼夜差异,春季夜间(18:00~次日6:00)的平均通量为1.788μmol m-2 s-1,白天(6:00~18:00)的平均通量为1.343μmol m-2 s-1。CO2通量呈现出春季(1.194μmol m-2 s-1)>夏季(0.882μmol m-2 s-1)>秋季(0.213μmol m-2 s-1)>冬季(-0.007μmol m-2 s-1)的特征,该养殖塘CO2年平均排放通量为0.571μmol m-2 s-1。在小时尺度上,春季CO2通量与风速、水温和气压均呈现显著负相关;夏季CO2通量与风速呈显著正相关,而与水温呈显著负相关;秋季CO2通量与气温和水温呈显著负相关,而与气压呈正相关;冬季CO2通量和水温呈显著正相关。在日尺度上,CO2通量的主要影响因子为水温,且CO2通量和水温呈正相关,基于水温的线性回归模型可以解释14.2%的CO2通量。就空间格局而言,养殖塘CO2通量受人工管理措施影响显著,具体表现为,在春季和冬季没有人为管理措施的情况下,CO2通量无显著空间差异,而夏季CO2通量呈现出明显的空间变化特征,人工投食区CO2通量高于其它区域,是自然生长区的2.1倍,是人工增氧区的3.5倍。