论文部分内容阅读
纳米级固体润滑剂由于其特殊的物理和化学性质而日益受到广泛的重视,并且发展迅速。目前人们兴趣主要集中在聚集法制备纳米微粒,但因其工艺较复杂、操作精细、成本高而工业化生产较困难。而工业上广泛应用的机械粉碎法虽具有工艺简单、制备效率高、可大批量生产的优点,但难以达到纳米级,最细也只能达到微米级,目前尚未见有关采用此法制备出纳米级微粒的报道。在采用机械粉碎法粉碎物料时,可能在物料被粉碎的同时,由于物料表面能的增加,颗粒之间会重新聚集,随着粉碎的进行,颗粒之间的聚集速度增大,当颗粒的被粉碎速度与颗粒之间的聚集速度相等时,粉碎与聚集就达到动态平衡,此时,物料就不能被粉碎得更细,因此本研究认为如果能在加强粉碎以提高物料的被粉碎速度的同时采用“外壳”结构加强颗粒之间的分散以大大降低颗粒之间的聚集速度,物料就可以被粉碎得更细,以致于达到纳米级。为此,本研究结合粉碎理论和胶体化学理论,在普通机械粉碎法的基础上,设计和制造了强化粉碎以提高粉碎速度和强化分散以降低聚集速度一体化的纳米球磨机,作为生产模拟设备,以此制出三种纳米级固体润滑剂,并对它们和辉煌公司的纳米级氟化石墨进行摩擦学特性的考察及综合对比、分析其摩擦作用机理。 本论文选用工业上常用的固体润滑剂MoS2、PTFE和滑石粉作为主要原料,通过本文所设计和制造的纳米球磨机进行了一系列的制备试验,通过扫描电镜和透射电镜对原料和所制备的样品的形貌和粒径进行分析,研究纳米球磨机的制备工艺参数,得出1999年上海人学博士学位论文较佳工艺参数为:转速为2 800r/l币n、粉磨时间为12h、钢球直径为Zmm、油体积比为40%、钢球填充率为35%.在纳米球磨机较佳工艺的基础上考察了油相粘度、原料添加量和各种表面活性剂对制备纳米级固体润滑剂的影响.发现较低的油相粘度、较低的原料添加量和对应各种材料而较佳的分散剂相配合可制备出纳米级微粒.其中分散剂T154和石油磺酸钡复配时,可制备出平均粒径为40nm,最小粒径为10nm的纳米级MoSZ;分散剂T154和氯化石蜡复配后,可制备出平均粒径为20nm,最小粒径为10nm的PTFE;分散剂T154和T306复配后所制备的纳米级滑石粉的平均粒径约为1 ZOnm,最小粒径为40nm.且它们的粒径均匀、分散度好.此外由于柔韧性的PTFE粉碎困难,本研究特别对PTFE进行了粉磨前Co60辐射的预处理,发现未经辐射或辐射剂量不够的PTFE都不能被制备成纳米级微粒,其辐射剂量为ZooK的PTFE可被制备成粒径为20nm左右的纳米级微粒.辐射前后其粒径虽无变化,但其分子骨架已被“松化”.而r射线与目前较先进的超低温冷冻法相比,具有工艺简单、效率高、成本低的优点,故更适于工业化生产.采用IR验证了所制备的纳米级微粒具有物理吸附了分散剂的“核壳”结构.三种纳米级固体润滑剂的结果证实了通过强化粉磨以提高粉碎速度的同时也必须采用分散剂强化分散以大大降低细颗粒聚集速度,这样才可以制备出纳米级微粒.这可能是机械法制备纳米材料的必要途径. 在四球试验机上对本研究所制备的三种纳米级固体润滑剂及氟化石墨进行了钢一钢点摩擦条件下的减摩抗磨性能、承载能力及采用介人法对铜一钢点摩擦的减摩、抗磨性能和钢一钢、铜-钢面摩擦减摩性能的详细考察并与其他常用添加剂作了对比和复配试验,结果表明:除在铜一钢摩擦条件下的纳米级Mos:抗磨性反而变差外,四种纳米级固体润滑剂均有优越的减摩性能、 纳米级固体润滑剂的研制和磨擦学性能研究良好的抗磨性能.纳米级氟化石墨的承载能力较好,其他三种纳米级固体润滑剂的承载能力均较差.但其他常用的添加剂与纳米级氟化石墨复配后在油相表层产生胶状凝块,影响应用.而纳米级PTFE、Mos:和滑石粉同上述其他添加剂的配伍性能良好,其中T301与它们复配后均有增效性 本文采用了俄歇电子能谱(AES)等分析仪对摩擦后的表面膜进行了分析,发现纳米级MosZ在摩擦面形成了沉积膜和化学反应膜(FeS或CuZS等,其中FeS对润滑有利,而CuZS对润滑不利),而纳米级PTFE、滑石粉和氟化石墨仅在摩擦表面形成物理沉积膜,主要靠层状结构起减摩抗磨作用. 本文根据上述结果从中优选了最佳配方进行蜗轮蜗杆台架试验,发现纳米级PTFE稍优于纳米级滑石粉,传动效率较高、磨损均较小,同时也发现纳米级MoS:有异常磨损,传动效率不高.通过能谱分析认为MoS:在铜摩擦面上形成的硬脆的CuZS是造成摩擦磨损增大的原因,因此认为纳米级MoS:不适宜作如蜗轮蜗杆之类的铜一钢摩擦副的润滑添加剂,这与某些报道结论相反.而滑石粉虽较PTFE稍差,但尚是一种价廉的、性能良好的减摩抗磨节能剂,特别适合用于低价的蜗轮蜗杆油脂. 本文所研制的纳米级PTFE、滑石粉等化学稳定性优良,在目前铜一钢摩擦润滑添加剂品种较少的情况下,为将来进一步研制各种稳定的减摩抗磨节能的润滑油脂产品提供了应用可行性的基础理论数据,同时又为摩擦学中纳米材料的制备和润滑增添了一些新的基础性数据、方法和观点.