论文部分内容阅读
相变储能混凝土具有储能蓄热的功能,将其运用到建筑围护结构中可以将环境中的热量以相变的形式进行吸收和释放,从而维持室内温度的相对稳定,提高室内环境的舒适度,降低建筑能耗。选取月桂醇作为相变材料,膨胀珍珠岩作为吸附材料。选择常压浸泡吸附法和真空浸泡吸附法作为相变储能骨料的制备方法,采用不同质量比的月桂醇与膨胀珍珠岩混合来制作不同吸附率的相变储能骨料;通过渗漏性试验和相变循环试验确定月桂醇的合理吸附率;选择湿裹水泥粉封装法和硅酸钙外壳封装法对相变储能骨料进行封装。选用粉煤灰陶粒和页岩陶粒制作不同设计强度的轻骨料混凝土作为基准混凝土。分别掺入5%、10%、15%和20%的未封装和封装后的相变储能骨料制备相变储能混凝土,通过混凝土立方体抗压强度和劈裂抗拉强度试验探究骨料掺量、骨料的封装和月桂醇相态对混凝土拉压性能的影响。通过导热系数测试探究骨料掺量、骨料的封装和月桂醇相态对混凝土导热系数的影响。通过相变循环试验探究不同循环次数对相变储能混凝土抗压强度的影响。通过进行不同吸附方式、时间和温度的吸附率试验得出:常压浸泡下合理的吸附时间和温度分别为4 h和50℃;真空浸泡下合理的吸附时间和温度分别为30 min和50℃。通过不同配比吸附试验和渗漏性试验得出,常压浸泡吸附的合理吸附率为40%,真空浸泡吸附的合理吸附率为45%。红外光谱测试结果表明,整个吸附过程中为纯物理吸附过程。相变储能混凝土抗压和劈裂抗拉试验表明:在相变储能骨料掺量不大于20%时,相变储能骨料掺量、骨料是否封装及骨料中相变材料的相态对混凝土的抗压和劈裂破坏形态均无明显影响;相变混凝土的拉压强度均随着相变储能骨料的掺量增加而降低,粉煤灰陶粒混凝土的抗压强度和劈裂抗拉强度最高分别降低了21.86%和22.18%;页岩陶粒混凝土的抗压强度和劈裂抗拉强度最高分别降低了26.17%和 28.27%。相变储能混凝土导热系数测试表明:随着相变储能骨料掺量的增加,混凝土的导热系数逐渐减小,其导热系数最高降低19.6%;其中液态组混凝土的导热系数要高于对应的固态组混凝土的导热系数;封装组混凝土的导热系数高于对应的未封装组混凝土导热系数。相变储能混凝土的相变循环试验表明:在100次循环以内,不同循环次数的各组抗压强度均随着骨料掺量的增加而减小。其规律与未经循环的相变储能混凝土一致,经历不同次数的相变循环对相变储能混凝土的抗压强度产生的影响很小,抗压强度变化不大。图41表25参84