【摘 要】
:
冷凝器是现代船舶动力系统的核心装置。因冷凝器用铜镍合金管材长期输运冷却介质——海水而时常发生腐蚀失效,导致船舶动力系统故障频发,是亟待解决的重大安全问题。开展船舶冷凝器用铜镍合金管材表面腐蚀行为与微观组织结构关系的研究,可为进一步提升铜镍合金管材表面耐蚀性提供必要的理论依据,也可为优化该类管材制备加工工艺提供重要理论支撑。本文借助扫描电镜(SEM)-能谱仪(EDS)/电子背散射衍射(EBSD)、原
论文部分内容阅读
冷凝器是现代船舶动力系统的核心装置。因冷凝器用铜镍合金管材长期输运冷却介质——海水而时常发生腐蚀失效,导致船舶动力系统故障频发,是亟待解决的重大安全问题。开展船舶冷凝器用铜镍合金管材表面腐蚀行为与微观组织结构关系的研究,可为进一步提升铜镍合金管材表面耐蚀性提供必要的理论依据,也可为优化该类管材制备加工工艺提供重要理论支撑。本文借助扫描电镜(SEM)-能谱仪(EDS)/电子背散射衍射(EBSD)、原子力显微镜(AFM)、金相显微镜(OM)等表征方法,基于定位跟踪技术,揭示铜镍合金管材表面微观腐蚀形貌的演化规律;利用SEM-EBSD、电化学工作站、拉曼(Raman)光谱表征CuNi10Fe1.6Mn铜镍合金管材表面微观腐蚀行为,揭示晶粒取向、电子束表面作用对铜镍合金管材表面微观耐腐蚀行为影响的内在机理。主要研究进展总结如下:1.通过对热处理后的铜镍合金管材样品进行介质为3.5%NaCl溶液的实验室均匀腐蚀全浸试验,发现样品表面微观点腐蚀行为与晶粒取向密切相关。点蚀坑由晶界向晶粒内部扩展。利用氧原子吸附模型分析表明,较比于靠近<1 1 1>、<1 0 1>方向的晶粒,取向靠近<00 1>方向晶粒的腐蚀产物更均匀致密,点蚀坑数量更少,且表面腐蚀产物的主要成分均为Cu2O和Cu2(OH)3Cl。2.对经SEM-EBSD实验后的铜镍合金管材样品表面微观腐蚀形貌和耐蚀性能进行分析,发现较比未经SEM-EBSD实验的铜镍合金管材样品表面腐蚀产物更少、自腐蚀电位更正、腐蚀电流更小。SEM-EDS及Raman实验结果表明,由于电子束表面作用,经SEM-EBSD实验后的铜镍合金管材样品表面更易形成NiO、Cu2O等腐蚀产物,上述腐蚀产物在腐蚀过程中对铜镍合金管材样品表面的保护性更强,因而表现为更优的耐蚀性能。3.基于SEM-EBSD和AFM定位跟踪技术,对铜镍合金管材表面微观腐蚀形貌与晶粒取向之间的关系进行研究,发现晶粒取向与<1 1 1>方向之间夹角越小,晶粒表面腐蚀深度越深,伴随着微观腐蚀形貌由扇贝状转变为阶梯状或四面体凸起状。利用台阶生长模型(TLK)分析表明,晶粒取向与<11 1>方向之间夹角越小,晶粒表面能越高,将优先发生腐蚀,且腐蚀速率高于表面能较低的晶粒表面,导致晶粒表面呈现扇贝状、台阶状及四面体凸起状三种微观腐蚀形貌。
其他文献
道岔是使机车从一股道转入另一股道的线路连接设备。道岔主要分布于站场咽喉,数量多、使用频率高,随着道岔技术的不断发展和载重、提速的要求,道岔的结构和型号也在不断的发生着变化,同步养护维修的要求和难度也在不同程度的增大。随着重载铁路和高速行车的发展和需求,跨区间无缝线路应运而生,而无缝道岔则是其结构组成中不可缺少的一部分。无缝道岔结构复杂,受温度力的影响较大,加上自身存在限位器等薄弱单元,因此对设备养
联锁试验作为铁路信号系统正常开通的最后一道关卡,对铁路的运输安全具有重要意义。随着铁路信号系统联锁设备的不断发展,其试验方式及内容愈发复杂。在信号设备大修、站场局部改造、新线验收等环节,联锁试验存在的风险也随之增加。因此研究降低工程试验风险的管理方式具有重要意义。论文以降低联锁设备工程试验风险为研究目标,对工程试验管理流程进行优化,主要完成的研究内容包括:(1)通过分析国内外关于联锁设备工程试验风
目前国内外轨道不平顺管理标准以单项不平顺幅值为主,但轨道现场实际往往存在各种类型的空间耦合叠加不平顺,轨道叠加不平顺对轮轨接触关系、列车运行品质的影响机理更为复杂,这使得列车安全平稳运行存在一些隐患。本文通过构建车辆-轨道耦合动力学模型,利用UM仿真软件将现实问题模型化,通过仿真模型研究现实问题,研究不同的复合不平顺组合工况对车辆的动力学响应,研究其规律并提出相应的管理方法和管理值,主要研究工作和
截止2021年底,我国高速铁路运营里程突破4万公里,高速铁路普遍采用无砟轨道结构,具有高整体性、高平顺性、高稳定性、维修量少等特点。目前,主要采用区段轨道质量指数TQI和超限峰值两种评价方法对轨道状态进行评价。由于无砟轨道的TQI指标是根据有砟轨道线路指标转化而来,在多年的使用过程中,发现其在无砟轨道不平顺幅值小、结构劣化具有经时特征、维修模式以扣件调整的局部维修为主等情况下的不适用性,特别是微小
随着航空航天技术的发展,空天飞行器的发动机燃烧室工作温度逐步提高。贵金属铱(Ir)具有极低的氧渗透率,是热防护部件和高温推进系统中应用潜力巨大的候选阻氧材料。美国已经将铼基镀铱用于发动机。熔盐电沉积法沉积速率快,能够适应复杂构件,研究在熔盐电沉积工艺中对Ir涂层组织结构等性能的影响规律,可为我国相关研究和应用提供一定的技术支撑。本文研究了 NaCl-KCl-CsCl熔盐、IrCl3和NaCl-KC
目前伟晶岩锂精矿提锂技术以硫酸熟化法处理锂辉石精矿和硫酸盐焙烧法处理锂云母精矿为主,这两种工艺存在的主要问题是锂精矿处理温度高,能耗大。本文采用低温碱体系焙烧-浸出工艺处理三种伟晶岩锂精矿,进行了工艺条件和差异性的研究,确定了焙烧反应机理,实现了在较低温度下从伟晶岩锂精矿中提取锂铷铯的目标。论文分别对锂辉石、铁锂云母、锂云母三种不同的伟晶岩锂精矿进行矿物组成和物理化学性质分析。经过热力学计算分析和
我国是有色金属生产和消费大国,有色金属冶炼过程产生的重金属污染对环境生态安全存在一定的威胁,其中镉和铅最为常见。重金属污染会导致土壤生物多样性下降,土壤板结,农作物减产或品质下降等,成为现代农业亟待解决的问题。重金属微生物固化作为一种利用微生物降低土壤中重金属有效性和植物体内积累的新型环保技术,能够有效解决农田土壤重金属污染问题。本论文以广西某有色矿冶园区周边镉和铅污染农田土壤作为研究对象,筛选出
稀土薄膜材料是国防军工和新一代电子信息等战略性新兴产业不可或缺的关键材料。作为薄膜溅射源,稀土靶材的微观组织均匀性、晶粒尺寸以及晶粒取向等因素将直接影响着溅射薄膜的性能。稀土金属多为密排六方结构,微观塑性变形机制复杂多变,冷塑性变形过程极易产生加工硬化而发生断裂,热处理过程易产生异常粗大晶粒,严重影响稀土金属靶材的可加工性和品质。因此,消除冷轧过程中加工硬化而导致靶材破裂、以及控制热处理过程中晶粒
粘结磁体具有形状自由度大、尺寸精度高、性价比高等优势,而被广泛应用于新能源汽车、电动工具、机器人以及存储等领域。在国内碳中和政策的驱动下,稀土永磁的用量需求加速增长。然而,目前的粘结磁体密度、性能较低,不能满足某些特殊场合的应用需求,这对粘结磁体的开发与制备提出新的要求。本文通过磁场取向、温压成型制备了各向异性NdFeB/SmFeN杂化粘结磁体。系统研究了 NdFeB原粉粒度、组分比例、NdFeB
《封神演义》的宗教冲突,小说文本表述为阐教与截教的斗法,实质上是明教与祆教间变相的斗争。姜子牙一派阐教代表的是明教,通天教主一派的截教代表的是祆教。老子、元始天尊、姜子牙拥护周武王,反抗现有商王朝的政治秩序,其反抗的政治逻辑为周武王践行仁政。阐教叙事是仁政、善、惩恶等意识的言说,是明教的艺术化化身。通天教主、闻仲等拥护商纣王,竭力维护统治阶级的利益,其被贬低丑化的逻辑主要是商纣王的荒淫无道。截教叙