脉冲等离子体推力器点火过程实验与理论研究

来源 :北京理工大学 | 被引量 : 0次 | 上传用户:liongliong473
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
最近几十年,小卫星应用领域的研究处在十分迅速的发展阶段。脉冲等离子体推力器(Pulsed Plasma Thruster,PPT),其即使处于功率很小的状态下工作也能够产生出比较高的比冲,并且可以提供很微小的推力以供精确控制使用。整个推进系统结构简单,质量较轻,可以使用较长时间;同时还具有高准确度的操控性和可连续启用等十分明显的优势。因此它普遍应用在小卫星等微小航天器的姿势轨道操控、微小压阻抵消、深空飞行推进及星际飞行等高准确度的航天计划。虽然效率低是现在PPT的主要问题,但是科学水平在不断的进步,航天技术在快速发展,电推进技术的高推力效率方向是其热门发展方向,从而可以让电推力装置在各种微小航天器上的装机范围变得更加广泛。本文主要是针对PPT的点火过程进行实验与理论研究。过去对于PPT启动的研究专注于火花塞本身,主要对火花塞的寿命和其点火可靠性进行研究,而对PPT的点火过程,尤其是PPT极板击穿过程,即火花塞产生初始电子到两极板导通引发电容放电过程的理论和实验研究几乎没有。本文以一个使用同轴型火花塞的平板型PPT为研究对象,在不同工况下,利用示波器和罗氏线圈对PPT从火花塞点火到PPT放电结束整个过程中,火花塞两极电压、极板电压和放电电流进行多次测量,分析PPT不放电原因;通过对比实验中各工况放电成功率,分析PPT点火过程的发生机理和影响因素。通过理论分析发现PPT点火过程不仅跟火花塞的性能有关,也与PPT的结构、工作参数和工作次数有关。本文为PPT的样机设计提供了一些思路。为提高PPT工作稳定性提供了方法。
其他文献
液压机械无级传动是一种双功率流复合传动系统,兼具了机械传动效率高和液压传动无级调速的特性,是大功率车辆理想的传动形式。为了解决液压机械换段过程中转速波动和瞬时动力中断等问题,本文以两离合器结合重叠的五阶段全功率动力换段方法为基础,进行液压机械全功率换段中功率转移机理和换段过程变排量液压元件排量比调节规律的研究。主要研究内容包括:(1)分析某等差两段式液压机械无级传动工作原理及全功率换段转矩特性和功
RNA结合蛋白(RNA-binding proteins,RBPs)是一类能够通过其特定结构域结合RNA上的核酸序列形成核糖核蛋白复合物(ribonucleoprotein complex,RNPs),调控RNA前体剪接,RNA转运,
随着基于位置的社交网络的普及,兴趣点推荐已经成为一项重要的任务,它需要学习用户的偏好和移动模式来推荐兴趣点。之前的研究表明,整合上下文信息如地理和时间的影响是必要
稀疏码分多址接入(Sparse Code Multiple Access,SCMA)技术是由华为公司所主导提出的,第二个第五代移动通信网络的全新空口核心技术。它加入了稀疏编码对照表,通过实现多个用
流体喉部喷管技术是一项新兴的推力矢量控制技术,一般是通过二次流体喷射,使主流与二次流发生相互作用,使得主流的喉部流通面积和喉部形状发生改变。它相对于目前普遍在固体火箭发动机中采用的机械推力矢量控制技术方法的优点是不需要驱动喉栓等传动伺服机构,减小了结构尺寸及质量,且没有可移动部件,使得可靠性增强。固体火箭发动机燃烧室内不仅仅存在多种引起声能的增益因素,同时也存在各种阻尼因素,它们能够造成声能损失,
镍基高温合金是现代航空发动机、航天器和火箭发射机以及舰艇和工业燃气轮机的关键热端部件材料(如涡轮叶片、导向器叶片、燃烧室等),也是核反应堆、化工设备、煤转化技术等工作环境非常严苛的重要高温结构材料。本文主要以GH3128高温镍基合金为研究对象,研究其在高温状况下蠕变行为,主要研究内容如下:应用Gleeble3800热力模拟试验机进行高温蠕变拉伸试验,分析GH3128高温镍基合金在高温状况下蠕变行为
近年来有很多心理学研究者对人类的数量加工能力与数学能力的关联展开了深入研究。比如,有学者发现儿童的空间数量感和数学能力之间存在相关性,并且不同群体之间的空间数量感
近红外光电探测器在临床诊断、治疗设备等生物医学领域有着广泛的应用前景,新型二维过渡金属硫族化合物(2D TMDs)因其优异界面和光电特性,在近红外光电探测器的研究中受到广泛
T91钢作为新一代核反应堆备选结构材料,具有良好的抗辐照蠕变与硬化能力,展现了广阔的应用前景,本课题旨在制备一种同时具有高强度、高热稳定性的新型超细晶T91合金。本文通过添加合金元素X(Hf、La、Zr、Y)从动力学(Zenner钉扎)和热力学(X溶质原子晶界偏析降低晶界能)稳定化两方面共同抑制晶粒长大。采用机械合金化和高温高压烧结技术(4 GPa/1100℃/30 min)成功制备了一系列超细晶
锂氧气电池凭借极高的理论能量密度(3500 W h kg-1)和充足的正极活性物质来源(氧气),从各种新型电池体系脱颖而出,成为未来储能器件的候选。然而,锂氧气电池的发展尚处起步阶段,有许多问题亟待解决:(1)氧气和离子传输效率低下;(2)副反应严重,循环稳定性差;(3)电解液挥发、泄露,存在安全隐患。针对这些问题,本文在正极材料结构设计和界面演化方面进行了一系列研究,成果如下:(1)通过对碳纳米