论文部分内容阅读
刚性罐道系统作为提升容器的导向装置,是立井提升装备的重要组成部分,其作用是限制容器在提升过程中产生的横向位移,保证容器沿井筒方向的安全稳定运行。由于处于矿山运输的咽喉部位,刚性罐道系统出现故障不仅会激发异常振动影响提升系统的正常运行,严重时故障引发的链式反应还将威胁到整个矿山的安全生产。传统的事后和定期维护方法不仅成本高、效率低、实时性差,而且容易受到人为主观因素的影响。因此,需要对刚性罐道系统进行健康监测,包括及时发现系统的故障、诊断故障的类型、预测关键部件的剩余使用寿命,从而动态合理地安排维护操作,保证刚性罐道系统运行的安全性和可靠性。立井提升刚性罐道系统包括刚性罐道和滚轮罐耳两个部分,本课题以刚性罐道和滚轮罐耳为研究对象,结合信号处理、特征提取、模式识别和寿命预测的理论和方法,开展刚性罐道系统的健康监测研究,形成基于振动信号分析的刚性罐道故障检测和诊断方法以及滚轮罐耳故障诊断和寿命预测方法,为保障刚性罐道系统的安全运行提供理论支撑和技术解决方案。首先,开展刚性罐道故障特性与影响因素研究。对刚性罐道不同故障模式的振动响应进行分析,通过与提升过程相对应,获得提升容器振动特性与故障种类之间的关系,为后续罐道故障诊断方法的提出奠定基础。对比分析了不同特性提升绳牵引下提升容器对罐道故障的振动响应,得到提升速度、提升质量和故障程度对容器振动的影响规律,为后续罐道故障检测方法的提出提供依据。其次,开展刚性罐道故障检测与诊断方法研究。针对提升容器的故障响应,利用尺度平均小波能量百分比表征罐道故障相关频率上的能量随提升过程的变化,从而削弱了随机噪声的干扰;通过Tukey控制图法自适应地设定健康监测阈值,消除了工况变化对检测效果的影响,实现了不同工况下罐道故障的有效检测。根据不同类型罐道故障下提升容器响应形式的差异,提出了基于动态时间规整的罐道故障诊断方法,消除了工况变化对诊断效果的影响,实现了不同工况下罐道故障的有效诊断。最后,开展滚轮罐耳故障诊断与寿命预测方法研究。为了充分利用罐耳故障振动数据,降低故障特征在不同时刻的波动现象,提出了基于随机平均算法的特征提取方法,结合集合经验模态分解和熵理论,构建了改进的排列熵作为故障特征,从而改善了样本特性,实现了滚轮罐耳故障信息的充分表达;借助支持向量机在分类上的优良性能,实现了滚轮罐耳故障的有效诊断。在对滚轮罐耳频谱演化规律分析的基础上,提出了敏感频带的概念,构建了以敏感频带能量为退化指标的罐耳性能退化曲线。针对噪声和随机干扰等因素在退化曲线中引起的波动现象,使用广义威布尔故障率函数对退化曲线进行拟合,达到了退化曲线与罐耳退化方向的严格一致。以RBF神经网络为预测模型,拟合后的特征为模型输入,罐耳的寿命百分比为模型输出,实现了滚轮罐耳的剩余使用寿命预测。该论文有图122幅,表23个,参考文献225篇。