【摘 要】
:
对超强超短脉冲激光一等离子体中高能电子加速的研究,有着非常重要的应用前景,吸引了许多科学工作者对其不断探索。本文是在考虑了呈高斯分布的激光脉冲的基础上,从电子分布函数
论文部分内容阅读
对超强超短脉冲激光一等离子体中高能电子加速的研究,有着非常重要的应用前景,吸引了许多科学工作者对其不断探索。本文是在考虑了呈高斯分布的激光脉冲的基础上,从电子分布函数着手研究了高能电子的产生和分布情况。
本文全面分析了在不同的超强超短脉冲激光作用下电子的运动轨迹。对于无脉冲形状的激光平面波是从考虑了相对论效应的Lorentz方程和能量方程出发,得到了电子的运动轨迹方程表达式,在纵向平均速度参照系下该电子的轨迹呈现“8”字形;对于高斯型单色激光平面波是从相对论Hamilton.Jacobi方程出发,得到激光平面波在脉冲前沿加速电子而脉冲后沿减速电子,电子能量增益为零;而对于高斯型单色激光非平面波是从拉格朗日运动方程和能量方程出发,通过四阶Runge—Kutta法数值求解,得到电子在纵向有质动力、横向电场作用下加速电子,最后在强大的横向有质动力作用下从脉冲侧面散射出去,可以获得很大能量增益
本文得到了相应的电子瞬时动量解析表达式。以高斯型超强超短脉冲激光平面波为例,利用得到的瞬时动量和相应的能量表达式推导了电子随瞬时能量的分布函数。本文考虑电子初始温度不高(约lOOeV)以及脉冲长度很短(约4.6个激光波长)时,也能得到两群高能电子群;在脉冲长度极短(仅有20个激光波长)和电子初始温度不太高的情况下,就有明显的三群高能电子群出现,且如果激光功率密度大于5×1018wcm-2时,高能电子的温度也达到MeV。详细讨论了上述两种情况高能电子群产生的机理以及物理参量对其影响。
本文从理论上得到高能电子的分布结果是相当引人注目的,能够解释实验中相应的高能电子的分布情况。
其他文献
中微子物理是当今粒子物理、天体物理与宇宙学的交叉前沿及实验研究的热点。中微子混合角θ13是中微子物理的基本参数之一,其数值的大小将决定未来中微子物理的发展方向。反应
利用实验教学,为学生“创造性的学”创造环境和条件.本文就作者经验谈了一些做法,改革实验教学的方法,充分利用趣味实验,多给学生动手实验的机会,对实验后要重视方法总结.
科学技术的日新月异,多媒体技术已经得到了广泛应用,推进了素质教育的进程.多媒体技术的应用,使信息的流通和传播更快捷,是一个宏大的信息资源库,使信息以不同的形式呈现出来
由于高气压下辉光放电产生的等离子体具有较高的电子密度和气体温度,气体分子的离解效率比较高,在放电中可以获得大量的活性粒子,因而这种放电在等离子体工艺中,特别是在快速沉积
初中阶段是一个学生学习的最重要的阶段,在这一阶段,随着大脑的活跃程度与记忆力达到整个人生的最顶峰,学习知识是最快最有效的.初中物理课程是一门非常重要的必修课程,它教
语文作为一门基础学科,为体现有效课堂教学向生活回归,往往创设不少情境,而我们没有意识到课堂本身就是生活.课堂必须真实,学生应成为课堂主人.一节课展示的不仅是教师的基本
本论文以典型的ZrMn合金为基础,研究了AB型Laves相Zr-Mn基贮氢合金的电子结构与成键特性,具体内容为:采用基于密度泛函的第一原理赝势平面波方法,对具有相同结构的AB型Laves相ZrM
宽禁带半导体ZnO成为当前世界性的热点课题,因为在常温下具有大的带隙(3.37eV)和激子束缚能(60meV)、高的电声耦合系数,以及在极端条.下的工作能力。其中,ZnO一维纳米材料的制备
使用微波电子回旋共振等离子体化学气相沉积(ECR-CVD)方法室温生长了非晶氢化的氮化硅薄膜。在薄膜制备方面,通过改变前驱气体的流量比,研究了薄膜的生长速率、等离子体的发射光
理想医用闪烁体有如下特点:高发光效率、快发光衰减、高密度、短辐射长度以及发射谱与探测器的光谱响应匹配。Lu2O2S的密度高达8.90g/cm3,是稀土硫氧化物体系中最重的材料;Ce3+