论文部分内容阅读
基于硫酸盐还原菌(SRB)的厌氧生物技术是一项处理酸性含硫酸盐重金属废水极具潜力的技术。本论文利用载有SRB的颗粒污泥处理酸性含硫酸盐重金属的模拟废水,研究厌氧生物反应器中不同位置的微生物菌群结构及不同pH值和重金属离子对微生物菌群结构的影响规律,为生物法处理酸性含硫酸盐重金属废水的反应器调控和处理效率的提高提供理论依据;研究模拟废水处理过程中重金属在颗粒污泥中的迁移规律,颗粒污泥对重金属的吸附作用及颗粒污泥对重金属的富集回收,为重金属废水资源化处理提供一定的理论基础;研究Mg2+和Ca2+对污泥颗粒化的影响规律,开发了一种颗粒污泥快速培养方法,缩短了厌氧反应器的启动时间。主要研究内容包括: ⑴在膨胀颗粒污泥床(EGSB)反应器中,分别分析了反应器上、中、下三个位置的水质特性,并利用PCR-DGGE和克隆文库技术分析了对应位置的微生物菌群组成。实验发现,SO42-主要在反应器的中部和下部被降解为硫化物,90%的COD消耗也发生在反应器中、下部。DGGE图谱显示优势菌群稳定,并负责了约90%的SO42-降解;反应器不同位置的微生物菌群组成并不相同,反应器上部的微生物菌群最为丰富。在微生物菌群中,Desulfovibrio是消耗乙醇降解SO42-的主要细菌,Desulfomicrobium在SO42-的降解中起到补充作用。除SRB外,主要菌群还包括Acinetobacter,Chloroflexi,Spirochete,Bacteroidete。论文对各菌群的功能也做了详细的分析。 ⑵通过考察不同进水pH(6.5、6.2、5.8、5.0、4.4、4.0、3.5)条件下EGSB反应器的运行效果,并利用PCR-DGG技术考察pH对微生物菌群的影响,发现:该反应器能够处理pH4.0以上的酸性含硫酸盐废水;随着系统pH的逐级降低,系统的菌群结构发生变化,但菌群多样性仍很丰富,菌群结构稳定,最终形成以Proteobacteria、Bacteroidetes,Thermotogae,Chloroflexi为优势菌的菌群结构;反应器中存在3种SRB,其中,主要为脱硫杆菌(Desulfobacteraceae)。 ⑶通过研究酸性含Cu2+、含SO42-废水的厌氧生物处理效果考察载有SRB的颗粒污泥对重金属废水的处理能力,实验发现,载有SRB的颗粒污泥能够高效地处理含SO42-和Cu2+的废水,SO42-降解完全,Cu2+的去除率最高达98.5%。通过XPS和XRD分析颗粒污泥的结构考察铜的沉淀形式,研究铜在颗粒污泥不同位置中的含量,并通过光学显微镜观察颗粒污泥的截面结构变化,考察铜在颗粒污泥中的分布特性及迁移规律,发现铜以CuS的形式沉淀去除,且CuS在颗粒污泥中呈现出从外层向内层迁移的趋势,最终富集在颗粒污泥内部。利用分子生物学技术分析系统中微生物菌群组成,发现,菌群结构发生较大的演替,优势菌群发生变化,最终形成以Bacteroidetes,Thermotogae和Synergistetes为优势菌群的菌群结构,处理过程中参与的SRB有两种,分别为Desulfuromonadales和Desulfovibrio。 ⑷通过研究pH5.5的含Cr(Ⅵ)、含SO42-废水的厌氧生物处理效果,发现,载有活性SRB的颗粒污泥对该废水有一定的处理效果,但是随着处理周期的延长,处理效果逐渐变差。通过研究颗粒污泥对Cr(Ⅵ)和Cr(Ⅲ)的吸附作用,并同时考察含有活性微生物和不含活性微生物的颗粒污泥对两种价态铬的吸附作用,发现:颗粒污泥对Cr(Ⅵ)和Cr(Ⅲ)均有吸附能力,但是对Cr(Ⅲ)的吸附速度和吸附量都要优于对Cr(Ⅵ)的吸附;活性微生物的存在能够增强颗粒污泥的吸附能力。通过研究接种颗粒污泥、颗粒污泥核、EPS和破碎污泥对废水的处理效果,考察了EPS对微生物的保护机制。通过利用高通量测序技术分析系统中微生物菌群的结构变化,发现:含铬废水使菌群多样性不断减小,丰富度不断降低,但是仍具有一定的菌群稳定性。最终形成以Thermotogae、Chloroflexi和Synergistetes为优势菌群的菌群结构。通过研究颗粒污泥不同层中铬的含量考察颗粒污泥对铬的富集作用,发现,在生物处理过程中,铬同样呈现出由颗粒外层向内层迁移的规律。采用酸浸法对颗粒污泥中富集的铬进行回收实验,发现湿污泥中的铬比干污泥中的铬更易回收;酸浓度高,固液比大对铬的回收相对较高,其中H2SO4的回收效果优于HCl和HNO3。 ⑸建立了一种能对颗粒污泥三维结构及元素分布进行观察的方法,并通过这种方法对成熟颗粒污泥进行能谱分析,发现钙分布在颗粒污泥外层而镁分布在颗粒污泥内层。通过考察Mg2+和Ca2+对污泥颗粒化的影响,发现两者均能促进污泥的颗粒化及污泥胞外多糖和蛋白含量的增加,Mg2+对于污泥颗粒的内部结构影响更大,Ca2+对于污泥颗粒的外部结构影响更大。由此提出了一种颗粒污泥快速培养方法,通过控制颗粒污泥不同生长阶段体系中Mg2+和Ca2+含量,大大缩短了颗粒污泥的生长周期,对厌氧生物反应器的快速启动具有重要的意义。