论文部分内容阅读
油菜除油用外,其饲用、菜用、肥用、花用和蜜用等功能不断被开发和利用。针对饲用油菜生物量变化大、含水率高,缺乏适用的收获机械的问题,结合饲用油菜植株高粗、脆嫩的生物学特性,研制了一种适用于小地块经营模式的饲用油菜收获机,确定了其基本结构、工作过程及工艺流程。为实现物料在切碎过程滑切省力,提出了一种“人”字形排布的滚刀式切碎器结构和一种交错排布的甩刀式切碎器结构,开展了台架对比试验确定了滚刀式切碎装置较优,建立了滚刀式切碎装置茎秆切碎过程仿真数值模型,进一步分析了动刀对茎秆拖拽降低切碎效果的原因,提出增加一种自适应调节喂料机构,并改进优化了其结构和作业参数。针对饲用油菜收获机因收获作业过程中喂入量波动大,导致各部件负载变化大而引起机架振动的问题,为减少机架振动及避免共振,结合有限元仿真试验与模态试验,改善了收获机机架动态性能。具体研究内容包括:
(1)选取了长江中下游地区主要饲用油菜品种,从宏观生物量积累来看,饲用油菜盛花期生物量最大,可达75000kg/hm2,盛花期生物量比抽薹期高约40%,比果荚期高约10%,预测机具适收期理论喂入量为3.98~7.57kg/s。全收获期茎秆和叶片平均含水率均在80%以上,随着饲用油菜植株的生长,茎秆剪切力、弯曲载荷和压缩载荷逐渐增大,果荚期达到峰值,最大平均剪切力为788.94N、最大弯曲载荷为435.48N、径向抗压载荷为576.18N、轴向抗压载荷为757.01N,说明全收获期饲用油菜是质地脆嫩、易于剪切、挤压破损的作物。不同时期切碎后的物料在薄板表面的最大滑动摩擦角小于46.13°。
(2)根据饲用油菜生物学特性和机械化收获设计要求,确定了收获过程的工艺流程。比较分析了各流程对应的不同方案,确定采用履带自走式动力底盘,伸缩拨指滚筒式捡拾器和侧向卸料的集料卸料装置。为降低饲用油菜收获机成本投入,将模块化设计方法应用到饲用油菜收获机研发中,实现了饲用油菜收获机功能的快速重构。
(3)对饲用油菜收获机的关键部件,包括滚刀式切碎装置、甩刀式切碎装置、集料卸料装置和青贮收获环节中捡拾器进行了设计和相关作业过程的分析。为实现物料在切碎过程滑切省力,提出了一种“人”字形排布的滚刀式切碎器结构和一种交错排布的甩刀式切碎器结构。基于物料抛送过程运动学原理,分析确定了滚刀式切碎器主轴转速为559~802r/min。根据茎秆空间位置变化,将茎秆切碎过程分为切断过程、断秆随动过程和断秆切碎过程,建立了茎秆在切碎装置切碎过程中的动力学模型,确定了影响茎秆切碎效果的因素。依据对伸缩拨指运动学分析,确定了滚筒主轴转速为45r/min。设计了双作用油缸单侧卸料的集料卸料装置,确定了料仓最大翻转状态下倾斜角为50°。
(4)以物料切碎后平均长度、均匀性、能耗和抛撒距离为评价指标,开展了滚刀式和甩刀式切碎装置台架对比试验,结果表明:两种切碎器切碎后的物料平均长度均达到切碎要求,滚刀式切碎的物料长度均匀性优于甩刀式;甩刀式切碎器平均能耗小于滚刀式,但滚刀式工作平稳性和可靠性优于甩刀式,滚刀式切碎的物料抛撒距离远于甩刀式;在喂入量为4~8kg/s时,滚刀式切碎器切碎后物料平均长度范围为49.91~65.64mm,均匀性范围为77.42%~82.09%,符合饲用油菜收获的农艺要求。
(5)针对物料理论切碎长度与实际物料切碎长度差异较大的问题,为探究切碎器与物料之间的相互作用,采用有限元法对切碎装置切碎过程的物料运动开展仿真分析,通过试验测定及仿真模拟合理推测了茎秆Plastic_Kinematic失效模型,茎秆最大剪切力仿真值与真实值误差最大值为7.59%。建立了滚刀式切碎装置茎秆切碎过程仿真数值模型,分析了动刀对茎秆拖拽降低切碎效果的原因。提出增加一种自适应调节喂料机构,由被动无序喂入改为主动有序喂入,以减少茎秆被拖拽。对改进后的滚刀式切碎装置进行了作业参数优化,单因素试验结果表明,喂入压辊转速为400~550r/min,切碎器转速为600~800r/min,茎秆切碎长度合格率较优。通过二次旋转正交组合试验,得出喂入压辊转速496.17r/min、切碎器主轴转速为709.14r/min时,茎秆切碎长度合格率为91.16%、功耗为3.98kJ。
(6)在改进切碎装置工艺流程基础上,为进一步提高整机的可靠性和作业效果,对机架振动特性展开了分析。通过分析自由模态下机架前6阶模态频率和振型,并采用模态试验分析验证了模型准确性,两者固有频率误差最大值为7.53%,振型基本一致,可认为所建机架模型合理。对比分析了机架固有频率与外部激励频率,筛选出引起机架共振的激励源。开展了不同部位支撑架材料厚度对新机架固有频率影响显著性的仿真试验,建立了机架材料厚度与质量优化模型,优化后的机架前三阶固有频率分别为30.068Hz、51.479Hz、55.677Hz,避开了外部激励频率范围,有效避免了共振产生。田间振动测试试验表明,新机架振动平稳,所有测点振动幅值未超过5m/s2,机架未发生明显共振,整机振动性能表现良好。
(7)以切碎长度合格率、留茬破坏率为评价指标,开展了鲜喂收获环节田间试验,结果表明:整机各个部件均运转正常,切碎装置抛料通道无堵塞,物料输送流畅;抽薹期物料平均切碎长度合格率为95.92%,盛花期为90.36%,果荚期为88.06%,长度合格率均满足饲用油菜饲喂要求。再生饲用油菜适收期收获的平均留茬破坏率不高于11.17%,机收后的再生饲用油菜生物量比人工刈割的低10.9%。机收饲用油菜比人工刈割的全株饲用油菜,相同饲喂量下采食时间平均缩短35.44%,采食量平均增加33.35%;不同时期机收饲用油菜饲喂的平均采食率达到94.05%,各时期饲用油菜采食量差异不大,采食时间差异较大。青贮收获环节田间试验结果表明:割倒晾晒4天后植株含水率下降到75%以下,满足青贮要求;捡拾器工作流畅、割台喂入顺畅,机组前进速度不高于0.7m/s时,捡拾器捡拾合格率不低于95.80%,可满足捡拾收获作业要求。
创新点1:针对饲用油菜不同收获期喂入量波动大的问题,研制了一种自适应喂入量波动的平板滚刀式切碎装置,实现了饲用油菜收获环节切碎要求;
创新点2:构建了滚刀式切碎装置切碎过程数值分析模型,探究了切碎器主轴转速对不同时期茎秆切碎长度影响,改进了滚刀式切碎装置的结构,优化了其工作参数。
(1)选取了长江中下游地区主要饲用油菜品种,从宏观生物量积累来看,饲用油菜盛花期生物量最大,可达75000kg/hm2,盛花期生物量比抽薹期高约40%,比果荚期高约10%,预测机具适收期理论喂入量为3.98~7.57kg/s。全收获期茎秆和叶片平均含水率均在80%以上,随着饲用油菜植株的生长,茎秆剪切力、弯曲载荷和压缩载荷逐渐增大,果荚期达到峰值,最大平均剪切力为788.94N、最大弯曲载荷为435.48N、径向抗压载荷为576.18N、轴向抗压载荷为757.01N,说明全收获期饲用油菜是质地脆嫩、易于剪切、挤压破损的作物。不同时期切碎后的物料在薄板表面的最大滑动摩擦角小于46.13°。
(2)根据饲用油菜生物学特性和机械化收获设计要求,确定了收获过程的工艺流程。比较分析了各流程对应的不同方案,确定采用履带自走式动力底盘,伸缩拨指滚筒式捡拾器和侧向卸料的集料卸料装置。为降低饲用油菜收获机成本投入,将模块化设计方法应用到饲用油菜收获机研发中,实现了饲用油菜收获机功能的快速重构。
(3)对饲用油菜收获机的关键部件,包括滚刀式切碎装置、甩刀式切碎装置、集料卸料装置和青贮收获环节中捡拾器进行了设计和相关作业过程的分析。为实现物料在切碎过程滑切省力,提出了一种“人”字形排布的滚刀式切碎器结构和一种交错排布的甩刀式切碎器结构。基于物料抛送过程运动学原理,分析确定了滚刀式切碎器主轴转速为559~802r/min。根据茎秆空间位置变化,将茎秆切碎过程分为切断过程、断秆随动过程和断秆切碎过程,建立了茎秆在切碎装置切碎过程中的动力学模型,确定了影响茎秆切碎效果的因素。依据对伸缩拨指运动学分析,确定了滚筒主轴转速为45r/min。设计了双作用油缸单侧卸料的集料卸料装置,确定了料仓最大翻转状态下倾斜角为50°。
(4)以物料切碎后平均长度、均匀性、能耗和抛撒距离为评价指标,开展了滚刀式和甩刀式切碎装置台架对比试验,结果表明:两种切碎器切碎后的物料平均长度均达到切碎要求,滚刀式切碎的物料长度均匀性优于甩刀式;甩刀式切碎器平均能耗小于滚刀式,但滚刀式工作平稳性和可靠性优于甩刀式,滚刀式切碎的物料抛撒距离远于甩刀式;在喂入量为4~8kg/s时,滚刀式切碎器切碎后物料平均长度范围为49.91~65.64mm,均匀性范围为77.42%~82.09%,符合饲用油菜收获的农艺要求。
(5)针对物料理论切碎长度与实际物料切碎长度差异较大的问题,为探究切碎器与物料之间的相互作用,采用有限元法对切碎装置切碎过程的物料运动开展仿真分析,通过试验测定及仿真模拟合理推测了茎秆Plastic_Kinematic失效模型,茎秆最大剪切力仿真值与真实值误差最大值为7.59%。建立了滚刀式切碎装置茎秆切碎过程仿真数值模型,分析了动刀对茎秆拖拽降低切碎效果的原因。提出增加一种自适应调节喂料机构,由被动无序喂入改为主动有序喂入,以减少茎秆被拖拽。对改进后的滚刀式切碎装置进行了作业参数优化,单因素试验结果表明,喂入压辊转速为400~550r/min,切碎器转速为600~800r/min,茎秆切碎长度合格率较优。通过二次旋转正交组合试验,得出喂入压辊转速496.17r/min、切碎器主轴转速为709.14r/min时,茎秆切碎长度合格率为91.16%、功耗为3.98kJ。
(6)在改进切碎装置工艺流程基础上,为进一步提高整机的可靠性和作业效果,对机架振动特性展开了分析。通过分析自由模态下机架前6阶模态频率和振型,并采用模态试验分析验证了模型准确性,两者固有频率误差最大值为7.53%,振型基本一致,可认为所建机架模型合理。对比分析了机架固有频率与外部激励频率,筛选出引起机架共振的激励源。开展了不同部位支撑架材料厚度对新机架固有频率影响显著性的仿真试验,建立了机架材料厚度与质量优化模型,优化后的机架前三阶固有频率分别为30.068Hz、51.479Hz、55.677Hz,避开了外部激励频率范围,有效避免了共振产生。田间振动测试试验表明,新机架振动平稳,所有测点振动幅值未超过5m/s2,机架未发生明显共振,整机振动性能表现良好。
(7)以切碎长度合格率、留茬破坏率为评价指标,开展了鲜喂收获环节田间试验,结果表明:整机各个部件均运转正常,切碎装置抛料通道无堵塞,物料输送流畅;抽薹期物料平均切碎长度合格率为95.92%,盛花期为90.36%,果荚期为88.06%,长度合格率均满足饲用油菜饲喂要求。再生饲用油菜适收期收获的平均留茬破坏率不高于11.17%,机收后的再生饲用油菜生物量比人工刈割的低10.9%。机收饲用油菜比人工刈割的全株饲用油菜,相同饲喂量下采食时间平均缩短35.44%,采食量平均增加33.35%;不同时期机收饲用油菜饲喂的平均采食率达到94.05%,各时期饲用油菜采食量差异不大,采食时间差异较大。青贮收获环节田间试验结果表明:割倒晾晒4天后植株含水率下降到75%以下,满足青贮要求;捡拾器工作流畅、割台喂入顺畅,机组前进速度不高于0.7m/s时,捡拾器捡拾合格率不低于95.80%,可满足捡拾收获作业要求。
创新点1:针对饲用油菜不同收获期喂入量波动大的问题,研制了一种自适应喂入量波动的平板滚刀式切碎装置,实现了饲用油菜收获环节切碎要求;
创新点2:构建了滚刀式切碎装置切碎过程数值分析模型,探究了切碎器主轴转速对不同时期茎秆切碎长度影响,改进了滚刀式切碎装置的结构,优化了其工作参数。