论文部分内容阅读
LED(Light-emitting diode)是注入式电致发光元件,具有光效高、环保、寿命长、方向性强、显色性好等特点,已广泛用于显示、装饰、道路及一些特殊照明领域。LED的光电转换效率为10%~25%,75%~90%的能量转换成热能,本文所使用的LED灯珠的光电转换效率20%。随着LED高度集成化发展,发热量线性增长,芯片温度升高,导致光源性能下降。因此,散热问题是LED发展的关键技术瓶颈之一。本文目的是设计单颗芯片功率大于0.5W的功率型LED散热器,研究结构参数对散热性能的影响,通过优化结构和改善热传导能力强化散热,解决LED的热问题。本文为功率型LED模块设计了带有遮板的具有烟囱效应的肋片式散热器(Cover Plate Stack Effect Fin-type Radiator, CPSEFR)和整体式重力热管散热器。首先,采用实验和数值模拟方法研究CPSEFR的散热性能;其次,对整体式重力热管进行模型设计、理论分析和计算其散热能力。首先,通过实验研究,CPSEFR将输入功率为56W和126W的LED模块的芯片温度分别控制在48.3℃、66.5℃;不同位置的灯珠温度均一性好;各组件的温度随功率的增大线性增加,芯片温度随单颗灯珠发热功率增加的线性拟合函数为y = 33.611 + 14.523x;功率从56W增加到126W的过程中,空气与芯片热源和空气与基板间的热阻值先降低后趋于平缓,最大与最小值相差约0.06℃/W,基板与引脚的热阻降低0.009℃/W左右。其次,通过数值模拟研究,散热器z方向流道和x方向侧部开槽流道内流体呈指数曲线流动;侧部开槽加强了z方向流体的扰乱程度,强化对流传热,是增强散热器散热能力的重要措施。CPSEFR的模拟值与实验值比较,运用Fluent软件得到的数值模拟结果与实验值非常接近,平均误差为2.67%,验证了数值模拟的正确性和实用性。散热器的散热能力随肋片间距的增加先增大后趋于平稳;随肋片数量的增加先增大后减小;基板尺寸的变化对散热器的散热能力影响较弱;侧部适当开槽有利于强化散热。最后,理论分析和计算发现,整体式重力热管散热器的理论最大传热量为0.355 W/cm2,能将输入功率为28W的LED模块芯片温度控制在36℃左右。研究成果可运用于工程实际,对于开发功率型LED新型结构散热器,提高散热器的散热性能,促进LED照明行业的发展具有重要意义。