论文部分内容阅读
生物吸附法是一种利用生物质材料自身吸附性能去除污染物质的有效方法。利用农林废弃生物质材料和微生物菌体为原料制备的生物吸附剂去除重金属,具有广阔的应用前景。但是单一农林类废弃生物质材料在实际应用中存在吸附容量低、密度小、易漂浮等缺点,而单一微生物菌体在吸附应用中也存在造粒困难、固液分离困难等问题,导致两者难以大规模单独应用于重金属污染治理中。近年来,有关改进生物质材料吸附容量和性能方面的报道很多,但采用农林废弃物接种耐重金属菌体制备复合生物吸附剂方面的研究甚少。本研究针对农林废弃生物质材料与耐铅真菌,利用两类不同材料制备复合生物吸附剂,通过耐性菌株和农林废弃物材料的生化复合过程,提升材料吸附性能。采用农林废弃物花生壳(PS)、粟米糠(MC)等为原料,与铅锌矿区尾矿渣中筛选出的耐性菌株米曲霉菌(Aspergillus oryae,HA)通过复合培养方式,制备花生壳-米曲霉(PSH)、粟米糠-米曲霉(MCH)等复合吸附剂,通过静态批量试验考察pH值、吸附剂浓度、Pb2+离子浓度和吸附时间对吸附效果的影响,通过动态连续流固定床吸附试验研究不同操作条件下固定床系统的吸附穿透曲线并分析其动态吸附特性,应用等温吸附模型、吸附动力学模型、穿透曲线拟合模型、扫描电镜和傅里叶红外光谱分析生物吸附剂对Pb2+离子的吸附机理。主要研究结果如下:①引入HA改变了玉米秸秆、小麦秸秆、花生壳和粟米糠的吸附容量,四种复合吸附剂的吸附能力存在较大差异,吸附容量增大顺序为粟米糠>花生壳>小麦秸秆>玉米秸秆。②静态Pb2+吸附试验结果表明,与MC和PS相比,MCH和PSH具有吸附容量大,吸附速率快,pH值适用范围广的特点。③相比于Freundlich和D-R等温吸附模型,Langmuir模型可以更好的描述不同吸附剂对Pb2+离子的等温吸附过程,PS、PSH、MC、MCH的理论吸附容量由qm分别为:14.62、20.92、11.89、21.79mg/g。Lagergren准二级动力学模型较准一级和颗粒内扩散模型可以更好的描述复合吸附剂对Pb2+的吸附过程,说明化学吸附为该过程的主要作用和限速步骤。④FTIR和SEM分析表明,复合后吸附剂表面形态和官能团均发生显著改变,活性官能团中以羧基、胺基的变化最为明显,羟基、羧基、氨基和羰基在吸附Pb2+过程中起主要作用。MCH相比PSH具有更多样的吸附活性官能团且表面形态变化更为明显。⑤ 动态连续流吸附试验结果表明,复合吸附剂PSH、MCH的穿透时间tb和饱和点时间te分别比单一吸附剂PS、MC明显推迟。复合后吸附剂PSH、MCH的动态吸附容量qexp分别由复合前的4.62、7.13 mg/g提升至6.49、8.30 mg/g。复合后吸附剂穿透曲线传质区长度缩短,系统的整体吸附能力提升。⑥动态连续流不同操作条件试验结果表明,系统的穿透时间tb随柱高的增加或者流速、初始Pb2+浓度的减小而增加,传质区长度H则随柱高的减小或者流速、初始浓度的增加而增加,其中流速变化对穿透时间和传质区长度影响最大,初始浓度变化对穿透时间和传质区长度影响最小。⑦Thomas 模型较好的拟合了 PSH(R2=0.9532~0.9828)和MCH(R2=0.9410~0.9681)对Pb2+的动态吸附过程,说明该过程中的内部扩散和外部扩散并非限速步骤,模型较好地预测了不同操作条件下吸附剂动态吸附性能,可以用于描述PSH为填料的吸附固定床系统。BDST模型较好的描述了 PSH和MCH系统的不同吸附柱高度与不同ct/co下的的穿透时间关系,对不同流速和初始浓度条件下的穿透时间进行了较为精确的预测,对吸附剂为PSH时的预测效果优于MCH。⑧相比单一材料,复合吸附剂对复合重金属离子的去除效果均有了明显提升,复合后PSH相比PS对Pb32+、Zn2+、Cd2+、Cu2+离子的的除率分别提升了75.55、123.56、119.39、95.15%,MCH 相比 MC 对 Pb2+、Zn2+、Cd2+、Cu2+离子的去除率分别提升了 188.26、135.50、139.49、173.92%,MCH对不同重金属离子的吸附效果提升更为明显。