【摘 要】
:
碳纤维织物增强复合材料具有高比刚度、高比强度、高损伤容限、良好的抗冲击性能以及灵活的可设计性,广泛应用于航空航天领域中承力结构部件。正确地分析及评价编织复合材料结构的力学性能是成功设计相关结构部件的关键。编织复合材料结构的力学行为强烈依赖于复杂的内部微细观结构及材料性能等诸多因素,尤其当宏观编织结构呈现扭曲等复杂结构形态时,如发动机叶片,其宏观的非线性与内部复杂的织物结构相关。基于唯象的实验方法是
论文部分内容阅读
碳纤维织物增强复合材料具有高比刚度、高比强度、高损伤容限、良好的抗冲击性能以及灵活的可设计性,广泛应用于航空航天领域中承力结构部件。正确地分析及评价编织复合材料结构的力学性能是成功设计相关结构部件的关键。编织复合材料结构的力学行为强烈依赖于复杂的内部微细观结构及材料性能等诸多因素,尤其当宏观编织结构呈现扭曲等复杂结构形态时,如发动机叶片,其宏观的非线性与内部复杂的织物结构相关。基于唯象的实验方法是获取材料力学性能的直接手段,而数值模拟方法是揭示宏观结构在受外部载荷时内部损伤破坏过程的有效途径。本文发展了基于快速傅里叶变换(FFT)的复合材料性能分析方法,构建了高效的微细宏观多尺度数值仿真方法,分析了编织复合材料异形结构的宏观力学行为、有效性能及微细观损伤失效机理,并通过了实验验证。首先,本文从单胞模型、多尺度数值分析方法、不确定性量化及传递和复合材料异形结构力学性能研究等方面详细综述和分析了国内外编织复合材料力学性能分析方法的研究现状,形成发展高效且精确的多尺度计算框架研究编织复合材料扭曲异形结构的力学响应的基本思路。然后,发展了一种基于FFT的数值模拟方法,结合损伤失效模型,能够快速反馈微细观尺度周期性单胞模型的力学响应,正确揭示了结构内部的损伤失效机理。考虑到FFT方法在不同组分材料界面处存在明显的应力震荡,进一步提出了像素重构技术结合层合板理论优化应力、应变场的质量,保证了该数值方法的精确性。其次,从微观尺度出发,构建了纤维随机分布的单向复合材料周期性单胞模型,重点考虑了纤维界面相性能沿厚度方向指数变化以及单向纤维的纵向压缩失稳。利用所建立的非线性FFT数值模拟方法分析了复合材料在微观尺度的力学性能,为细观尺度编织复合材料纱线的力学性能提供了合理的信息输入。将各向异性损伤演化模型引入FFT算法中,进而对在不同载荷作用下的编织复合材料进行损伤失效分析。再次,针对编织复合材料异形结构,设计了不同扭曲角度试件及夹具,开展了悬臂梁实验,探究了不同扭曲角度试件的力学响应及失效机制。由于宏观结构扭曲变异,造成了内部织物结构存在随机不确定性,利用Micro-CT无损检测技术统计内部纱线几何特征信息,建立了多元高斯模型,对不确定性信息进行了量化,建立了高保真细观单胞模型。最后,将微细观尺度基于FFT的计算模型与宏观尺度有限元模型结合,形成了耦合FE-FFT的一致多尺度计算方法。其中,宏观结构采用有限元网格,单元积分点响应通过细观周期性单胞的分析结果更新。利用该方法探究了3D编织复合材料梁结构在三点弯曲载荷下的力学行为,通过与文献实验结果及其他数值方法对比,验证了所提出的多尺度数值模拟的可靠性与高效性。进一步将不确定性量化模型嵌入到耦合FE-FFT的一致多尺度计算方法中,在宏-细-微观各尺度内进行不确定性量化,并在不同尺度间进行传递,揭示了编织复合材料扭曲异形结构在悬臂梁载荷条件下的损伤失效机理。本论文研究方法同样适用于其他类型的编织复合材料异形结构,为编织复合材料在实际工程部件中的应用提供了可靠的理论依据。
其他文献
无线传感器网络的出现使人们可以利用微小的传感器节点监测复杂的物理世界。因此,无线传感器网络被广泛应用于各个领域,如军事监测、环境监测、交通监测、以及结构健康监测等等,为人类的生活带来便利。调度问题是无线传感器网络的基础问题之一,包括通信调度问题和计算调度问题。调度问题研究网络中信道资源和计算资源的分配,直接影响了网络的性能。传统的无线传感器网络由配备电池能源的传感器节点组成,该节点称作有源传感器节
微结构表面因其辐射特性具有调控手段丰富、调控能力强等优点,而广泛应用于目标探测、航天器热控和太阳能利用等领域。同时,基于可逆热致变色材料的微结构表面因其辐射特性具有随温度可逆变化的特点,在上述各领域拥有广泛的应用前景。目前,尽管针对微结构表面辐射特性的研究已开展较多,但是对实际机加工产生的类光栅微结构表面辐射特性的研究还较少,尤其是加工后的基材形貌对金属表面辐射特性的影响规律尚不明确。同时,工程中
保加利亚乳杆菌是发酵乳制品发酵剂主体菌种之一,其高生物量是开发高效直投式发酵剂的关键。目前研究发现即使在营养充足条件下,发酵对数末期增殖能力仍会下降,这可能与菌体生理状态密切相关,因此挖掘保加利亚乳杆菌培养过程中菌体生理状态变化以及其对活性菌体数量的影响,揭示培养过程菌体分裂的影响机制,促进菌体分裂以解决菌体增殖瓶颈,提高菌体培养密度,对实现发酵剂高活性制备具有重要意义。本文通过探讨保加利亚乳杆菌
复合材料点阵夹芯结构具有高比强度和高比刚度的力学性能优势,因此其在航空、航天和船舶工业等领域有良好的应用前景。在集中或非均匀载荷的作用下,梯度点阵夹芯结构能更加充分的发挥其承载能力,区别于传统的均匀点阵夹芯结构,梯度点阵夹芯结构的几何构型的有序变化导致了单胞力学性能及密度在夹芯结构内的梯度分布,合理分配了点阵夹芯的质量,提升了结构的承载效率,因此其在弯曲、整体屈曲和振动性能等方面具有一定的优势。目
在航空航天、光学、微电子等领域中的核心器件呈现出结构复杂化、小型化、高加工要求化等发展趋势以增强其功能特性并减小特征尺寸。这些器件多采用难以加工的硬脆材料,这也增加了其制备难度。例如半球谐振子,即是一种典型的小口径薄壁复杂构件,是半球谐振陀螺仪的核心部件。半球谐振陀螺仪由于精度高、可靠性高、结构简单、工作寿命长、体积小、质量轻、抗冲击能力强等一系列特点而受到广泛关注,是执行高价值空间任务的首要选择
兴起于美国的社会情感学习近年来逐渐受到中国教育研究者和实践者的关注。在借鉴这一教育理念并将它运用到中国教育情境时,需要深刻理解其所根植的西方文化对其核心思想的塑造,并对此保持反思性的审察。以这种审察作为对照,从中国文化的视角,围绕社会情感学习的三个核心概念——自我、社会和情感——展开对于这一教育理念内涵实质的探讨。通过厘清先秦时期儒家和道家对于相关概念的论述,为理解和践行社会情感学习提供中国理论的
大力开展能源转型和清洁能源利用是实现碳中和的必要条件。我国太阳能资源越丰富的地区,往往冬季越是寒冷,将夏季丰富的太阳能跨季节转移到寒冷的冬季是实现清洁供暖的梦想。基于水合盐与水蒸气的可逆水合/脱水反应的热化学储热技术,具有能量密度高、无需绝热防护、储存周期长等优点,是进行跨季节储热的最佳选择。其中氯化钙水合物因价格低廉、环境友好、反应温度区间与建筑供暖相匹配等优点,受到研究者的广泛关注。然而,热化
负刚度结构具有迥异于常见轻质结构的力学特性,如可重用性、跳变特性、多稳态特性,特殊的串联特性等。由于这些特性,该类结构在缓冲吸能、减振降噪等方面展现出一些其他结构所不具备的优势,具有广阔的应用前景。然而,受到结构特征和变形机制的制约,现有负刚度结构的刚度和承载能力远低于泡沫、蜂窝、点阵这样的常见轻质结构和材料,这大大限制了负刚度结构的应用。针对这个问题,本文研究了一种新的负刚度机制,并基于此进行了
提高金属材料强度的同时,提升塑性是材料科学界一直渴望实现的研究目标,但一般提高金属强度的因素往往会导致塑性的降低,强度和塑性间表现出倒置的矛盾关系。金属基复合材料是通过在金属基体中人为地引入刚性颗粒以同时提高材料强度和刚度的一种被广泛采用的方法,但因颗粒与基体弹性模量差异过大,不协调变形,导致界面应力集中而发生早期开裂,塑性较基体急剧降低。为了解决此种强塑性间的制约问题,本文以石墨烯/6063Al
在纤维增强复合材料中,界面即纤维和树脂基体间的界面区域,被认为是决定复合材料整体性能的关键因素。然而在复合材料的长期使用过程中,界面容易受到机械力、化学、热、紫外线辐射等刺激的影响,在结构内部形成裂纹或微裂纹,这些裂纹或微裂纹很难检测和修复,随着裂纹的不断扩展最终导致复合材料整体性能失效。赋予复合材料界面损伤修复性能作为一种延长复合材料使用寿命的新兴方法一直是各国科研工作者研究的热点。本论文针对热