多电磁阀控制燃油系统凸轮参数化设计与供油特性研究

来源 :北京理工大学 | 被引量 : 0次 | 上传用户:blademan_0617
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
未来的柴油机的燃油系统应具有成本低,结构紧凑,油压任意可调,响应速度快,喷油量任意可控等优点,而当前主流燃油系统无法完全满足这些要求,因而需要提出一种新的燃油系统。多电磁阀控制燃油喷射系统(简称多阀燃油系统)基于单体泵和高压共轨系统而来,兼具两者的优点。单体泵系统以及共轨系统已具有扎实的理论基础,但关于多阀燃油系统的研究刚刚起步,系统的构建以及供油特性仍需要探索。本文以多阀燃油系统的供油凸轮型线设计方法和系统油压特性研究为主线,采用试验与计算相结合的方法,开展了多阀系统供油凸轮型线设计方法、结构匹配、压力波动特性以及控制方法等研究。首先,对多阀燃油系统的供油凸轮参数化设计方法进行了研究。通过对多阀燃油系统的性能分析,对比不同供油凸轮特点,提出了以双凸起等速函数凸轮作为多阀燃油系统的供油凸轮;分析了供油凸轮工作过程特点,结合多阀系统油压特性、凸轮受力情况、加工工艺、吸油充分等约束条件来搭建凸轮升程曲线数学模型,并以滚子与凸轮最大接触应力、最大压力角以及凸轮最小曲率半径作为约束条件,提出了最小凸轮基圆的确定方法;根据所给定的关键参数完成了多阀供油凸轮的设计,并通过仿真计算与试验进行了双凸起等速函数供油凸轮的校核及验证,为多阀燃油系统试验研究提供了基础。然后,对多阀燃油系统供油特性以及油压特性进行了研究。通过对多阀燃油系统关键结构参数对系统供油特性影响规律分析,提出了多阀燃油系统主要结构参数匹配方法;随后,通过多阀燃油系统试验台架进行了多阀系统油压波动特性试验研究,结果表明多阀供油系统中由于嘴端油压反射导致系统泵端油压存在明显波动;最后,以单体泵系统为研究对象,深入研究油温对系统性能影响规律以及内在机理,提出了单体泵供油系统性能特性受燃油温度影响变化规律会随着转速的改变而变化的特点,基于燃油温度对单体泵性能影响规律研究,分析了多阀供油系统性能受燃油温度改变的影响规律,相同控制模式下,多阀系统循环喷油量以及喷油压力随着燃油温度的升高而降低,但燃油温度对多阀系统起喷和断喷过程的影响规律受控制过程的约束。最后,对多阀燃油系统控制方法进行研究。通过对多阀燃油系统供油提前角受转速影响规律的分析,探索了供油提前角在不同转速条件下的修正方法;采用修正后的提前角及供油脉宽对多阀燃油系统不同转速下的油压特征进行分析,发现了多阀燃油系统在不喷油时,峰值油压与实际凸轮工作段紧密相关而对凸轮转速不敏感的特点;对多阀燃油系统供油提前角以及喷油提前角进行系统地研究,分析了多阀燃油系统的响应特性,提出了多阀燃油系统任意转速条件下,对起喷油压进行准确控制的方法,并给出了 NOP在不同供油持续期条件下的控制MAP,为多阀系统柴油机的应用提供了基础;最后结合本文所设计的多阀系统供油凸轮,对多阀燃油系统进行循环间供油特性对比分析,发现多阀燃油系统在不同控制模式下,供油特性稳定,实现了一泵为两缸供油的独特功能。
其他文献
城市环境将成为未来作战的中心舞台。在城市地区进行的非平衡对抗,对军事规划者来说是一个挑战。适时的进行侦察、监视和目标捕获(RSTA)是在城市环境作战最重要的问题。可抛
由于打击精度高、射程远、隐蔽性好等特点,潜射武器备受各军事强国的重视。近年来,为了减小潜基导弹的出水载荷,国内外均发展了通气状态下的出水方式,以此来改善弹体在出水过
生物膜融合是众多生理过程中的关键环节,如神经传导、药物释放等。但融合过程的分子机制还不完全清楚。本文主要通过分子动力学模拟的方法研究融合过程中膜结构的演化及其分
离子光学系统(离子发动机栅极)是离子发动机的关键部件。它们由电偏置的多孔栅格组成,通常为两个或三个(屏幕栅极、加速器栅极和减速器栅极),其作用是提取并加速离子发动机放电室
材料动态本构模型和数据是面向高端制造的先进数据库的有机组成部分,现代加工技术以高速、高精度以及新型难加工材料为典型特征,尤其随着以第三代高强钢为代表的高强度钢、超
钢筋混凝土靶的侵彻/贯穿研究可为钻地武器有效发挥毁伤作用以及钢筋混凝土结构有效承担防护功能提供必要的理论支撑。本文以素混凝土靶侵彻/贯穿的相关研究为基础,利用实验
直线电机式自由活塞发动机(Free Piston Engine,简称FPE)作为一种新型内燃发电动力装置具有结构简单、功率密度高、能量传递路径短等诸多性能优势,已成为混合动力汽车优选方
随着科学技术发展,图像分辨率越来越高,需要检测的信息越来越复杂,传统人工处理数字图像无法满足处理速度和精度的要求。计算机自动图像处理技术应运而生,在提高图像处理精度
C-N键联唑类高氮含能化合物具有高氮含量、正生成焓,且分解后产物对环境友好。本文以C-N键联唑类化合物为基础,设计并合成了23种新型高氮含能化合物的金属盐和有机盐,并对其
铁电薄膜在微机电系统、高速存储器及半导体等领域中广泛应用,其独特的电-力学特性使得它们成为新型功能材料和微电子器件领域的研究热点。例如,在铁电存储器的应用中,铁电薄