论文部分内容阅读
光致变色复合材料由于其优良的光学特性和应用价值得到广泛的关注。而杂多酸因其具有确定的结构和特异、优越的光、电、磁等物理化学性质,已经成为构造新型功能材料的重要无机构筑块。本文以磷钼酸为主体合成了一系列纳米复合薄膜,研究了不同类型复合膜的微结构和光致变色性能,主要内容可归纳如下;●利用溶胶-凝胶法制备了磷钼酸/二氧化钛复合薄膜,得到了机械性能和稳定性良好的可逆光致变色薄膜。复合膜在复合前后的表面形貌、微结构都有相应的变化,是由于在PMoA与TiO2界面问形成了Mo-O-Ti键电荷转移桥。在紫外光照下,复合薄膜由无色变蓝色,蓝色薄膜在空气中暗处放置后可恢复为无色。磷钼酸/二氧化钛体系的光致变色过程是按照电子迁移的机制进行的。●利用氢键作用将杂多酸复合到聚丙烯酰胺高分子网络内制备了一系列的新型光致变色薄膜。该类复合膜具有良好的光致变色性能,在紫外光照射下可以通过氢键构建的电荷转移桥将有机分子中的电子传输给杂多酸,使杂多酸发生还原反应而变色,整个光还原过程按照一种自由基机理进行。pH对复合膜结构和光致变色性能存在显著影响。体系光致变色性能随pH的增加而降低,这种光致变色性能的差异主要是pH变化引起杂多化合物分子结构的变化导致的。●将Fe2+引入到磷钼酸/PAM中形成新的复合体系。复合体系的微观结构,由规则的球状分布变为不规则形状分布。杂多化合物与N-H键之间形成了氢键作用构建了电荷转移桥,而N原子和Fe2+则通过配位形成金属络合物。Fe2+掺杂影响了复合膜的变色强度,这种响应性的差异主要是由于Fe2+的掺杂构成了光激发下的电子竞争环境,Fe2+对电子的部分吸收导致了参与光还原反应的杂多化合物分子数量的降低。pH对复合膜结构和光致变色性能存在显著影响。随着pH的增加,薄膜的光致变色生色饱和强度逐渐升高。这种响应性的差异主要是由于碱性物质的加入扰动了Fe2+与高分子之间以及多酸分子与高分子之间的作用平衡,使多酸分子与高分子之间的作用增强。