论文部分内容阅读
非平稳信号的稀疏表示和高效处理算法是数学和信息科学研究的重要内容,其中,近年来建立起来的小波理论与算法已经成为信号稀疏表示的有效方法。但是,传统小波变换在处理信号和图像时存在平移敏感性和方向选择性弱等缺陷,因此,研究具有更好的近似平移不变性和奇异特征表示能力的新型小波变换,成为当前小波理论发展以及图像处理中非常重要的课题。由于图像获取方式的限制或在传输过程中受到干扰,通常导致观测的图像质量过低或被各种噪声所污染。图像去噪的主要目的是在保留图像原有重要信息的前提下降低或消除噪声,获得高质量的为人类视觉所接受的图像,从而为下一步的图像处理奠定基础。图像增强的目的是通过处理凸显原图像不够清晰的细节信息,使得处理后的图像更加便于人眼理解或机器识别。图像去噪和增强都是目前计算机视觉和图像处理领域最基本的且仍未很好解决的挑战性课题。针对传统离散小波变换(DWT,Discrete Wavelet Transform)的局限,本文深入研究了二元树复数小波变换(DT-CWT,Dual-Tree Complex Wavelet Transform)的相关性质,包括近似平移不变性、方向性和实现问题等,并在此基础上提出了构造二元树复数小波滤波器组的新算法;提出了一种新型复数小波变换—高密二元树离散小波变换(HD-DT DWT,Higher-Density Dual-Tree DWT),研究了其相关的性质及满足各种约束条件的滤波器组的构造方法;为更好的处理非平稳信号,初步研究了基于全变差模型和优化方法的信号和图像自适应分解问题;进一步深入研究了新型复数小波变换在图像去噪和增强中的应用,获得了比现有方法有显著改进的实验结果。本文的主要工作和创新如下:■研究了二元树复数小波中双正交Hilbert变换对的构造。对线性相位双正交小波的构造和二元树复数小波变换的相关性质进行了充分而详尽的研究,在此基础上提出了利用参数化技术和最优化方法构造二元树复数小波变换中的Hilbert变换对的方法。这种滤波器设计的优点在于,对参数作适当的调节就能得到有理系数的二元树复数小波滤波器组,对于提高变换速度和效率、降低计算复杂度都有显著意义。■针对传统DWT的缺陷,提出了高密度二元树离散小波变换这一新型复数小波变换的概念,系统深入的研究了高密度二元树离散小波变换的性质和构造方法,利用分数阶延迟滤波器、谱因子分解等技术构造出了具有紧支撑、消失矩、较高阶的光滑性、近似Hilbert变换对关系、中间尺度等优良性质的小波函数,为信号和图像等高维数据的分析提供了一种新的变换方法。■作为用小波变换对信号和图像进行分解的一种推广,本文还初步研究了基于优化方法的信号和图像自适应分解问题,根据信号自适应的得到其低分辨率近似和重构滤波器,使得重构信号与原信号之间的误差最小。为提高所得近似图像的视觉质量,我们进一步将全变差模型引入自适应分解方法中,为对信号或图像进行自适应分解提供了一种新思路。■基于理论研究的结果,进一步深入探讨了新型复数小波变换在图像去噪和增强中的应用,提出了三种基于DT-CWT的图像去噪新算法:(ⅰ)复数小波变换域利用系数尺度间和尺度内相关性的图像去噪算法;(ⅱ)基于局部参数的二元树复数小波域隐马尔可夫树(HMT,Hidden Markov Tree)模型图像去噪;(ⅲ)复数小波域高斯尺度混合(GSM,Gaussian Scale Mixture)模型去噪。这些方法充分利用了复数小波变换的优良性质及其系数分布的统计规律,实验表明,在简化计算复杂度、提高计算效率的同时获得了比现有相关去噪算法有显著改进的的去噪效果。另外,我们还提出了一种基于尺度间和尺度内相关性SURE方法的正交小波阈值去噪方法,解决了最近提出的正交小波域去噪算法对含较多纹理的图像处理效果不佳的缺陷,成为目前非冗余小波变换域效果最好的去噪算法。■最后,我们还探讨了结合新型复数小波变换和最优视觉表示的统计特性的图像增强问题,提出了两种图像增强算法:(ⅰ)基于双密度二元树离散小波变换(DD-DT DWT,Double-Density Dual-Tree DWT)和视觉表示的图像增强算法,取得了非常好的视觉效果;(ⅱ)基于二元树复数小波和视觉表示的噪声图像增强算法,较好的缓解了带噪声图像增强中噪声抑制和细节保护之间的矛盾。