论文部分内容阅读
我国城市化进程在不断推进,进行了大规模的工程建设,产生了许多建筑渣土。建设部提供的2016年我国部分城市建筑垃圾产量调研结果,建筑渣土的总产量占比高达75.5%,其中杭州的建筑渣土年产量达到12616万吨,占比最大。由于处置场地匮乏,自2010年开始杭州的建筑渣土主要通过工程车和船舶运输到德清、富阳等地的废弃矿坑和低洼地进行回填消纳。这种处置方法可以解决渣土场地土地资源匮乏的问题,也不存在堆填失稳滑坡的安全隐患,还能治理废弃矿坑,制造土地资源,是当下新兴的处置方法。但这类型矿坑填埋场有大量积水,只是将建筑渣土进行简单的倾倒回填,存在固结缓慢,填埋场容量利用率低,工后沉降大,地基承载力低等问题,反映了我们对建筑渣土矿坑回填技术的认识不足。因此需要深入研究影响建筑渣土填埋场沉降、容量的因素,提出建筑渣土填埋场的增容措施、控制工后沉降的方法,并规范建筑渣土填埋的设计运营流程。本文通过现场调查和勘察、原位试验、室内试验对杭州德清花山矿坑建筑渣土填埋场中的建筑渣土工程特性进行了总结,得出了建筑渣土的饱和重度曲线,压实度,固结度,超静孔压等随深度变化的规律,并对填埋场地形进行3D建模,利用LANDFILL填埋场沉降与容量分析软件分析积水工况,地下水位高度,初始干密度、初始孔隙比对填埋场沉降和容量的影响规律,主要得到了以下结论:(1)建筑渣土颗粒级配差距大,其中含有碎石、砖块等大颗粒物质。该填埋场内的土质分布不均,主要分为低液限黏土(CL),含砂细粒土(CLS)两种。在填埋过程中,填埋场处于积水状态,且没有排水措施,建筑渣土接近或处于饱和状态,含水量高。30.6%的建筑渣土土样处于流塑状态,42.9%的建筑渣土处于软塑状态,26.5%的土样处于可塑状态。其中2m以上的浅层土样和部分深层土样处于流塑状态,土质整体偏软。与动力触探结果和标贯结果一致,地基承载力低。填埋后未进行压实处理,压实不充分,填土干密度较小,B1、B2、B3、B4孔的38个土样和表层土 9个土样的平均压实度为0.75,B5孔11个土样的平均压实度为0.83,压实度低,土体渗透性差。当饱和度介于0.8到1之间时,渣土的黏聚力随饱和度的增加而减小,内摩擦角随饱和的增加而减小,在各级压力下所对应的抗剪强度均随饱和度增加而减小。经大尺寸固结仪完成的固结试验结果表明,建筑渣土具有高压缩性,整个填埋场的固结度偏低,5年的堆积年限里平均固结度仅为44.9%。按照当前这种填埋方法进行建筑渣土填埋,会导致填埋场中土体的压实度低、土质偏软,固结程度低,固结缓慢。(2)LANDFILL软件数值模拟结果显示,填埋场的几何库容VG计算结果为9.03×105m3,按照目前这种积水填埋方式进行堆填,堆填5年后,实际堆填容量VA计算结果为9.86×105m3,实际堆填质量计算结果为1.625×106t,填埋场的扩容率仅仅为9.2%;该种填埋工况下如果完成主固结沉降,填埋场的扩容率可以达到21.6%,能多填1.88×105t建筑渣土,矿坑容量12.4%未得到利用,对填埋场的容量影响很大,需对填埋工艺进行研究改进。沉降的理论计算结果均略小于软件计算结果,平均误差值小于5%。(3)当地下水位从24m降至14m时,矿坑填埋场的容量增加量便达到了降水所能产生的增加量的90%,而剩余14m的降水仅对容量增加贡献了 10%的作用。降低地下水位可以提高填埋场的扩容率,增加填埋场的容量,但是随着地下水位的不断下降,地下水位高度对扩容率的影响也越来越小,扩容率增长速率减缓,实际工程当中若采用降低地下水位的方法增加填埋场的容量,需要结合场地地形及填土的物理力学性质等工程实际情况及降水施工的成本,从三方面综合考虑,得到最佳的降水增容方法。(4)随着土体初始干密度的增加,矿坑的主固结沉降逐渐减小,根据扩容率的计算方法导致了扩容率减少,但是土体更加密实,颗粒的空隙更少,所以实际上增大初始干密度可以增大矿坑的容量,并且由自重或者外荷载产生的压缩沉降会更小。分层填埋速率对沉降计算结果影响很大,为保证结果的准确性,应根据填埋场实际的填埋过程确定分层堆填速率进行填埋场容量分析。(5)提出了建筑渣土矿坑填埋场容量最大化的设计流程及控制措施。需对填埋场的几何库容及积水体积进行测定,确定建筑渣土的种类,进行预处理及改性,采用具有针对性的回填方案,回填过程中注意压实排水及填埋速率,并做好封场处理。