飞行目标的异常航迹检测研究与分析

来源 :西安电子科技大学 | 被引量 : 0次 | 上传用户:huahua7717
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在民航领域空中交通控制系统中,应用飞行目标的异常航迹检测技术,当检测到异常航迹时,能够提供报警信息,提高民航客机运行效率和安全。在军事领域,异常航迹检测技术识别出敌机的异常航迹,可以有效地掌握战场态势信息。所以,异常航迹检测在民航领域和军事领域有重要的应用。多目标跟踪技术是实现异常航迹检测的重要前提。研究滤波算法,设计实验,分析实验结果。在数据关联算法中,研究联合概率数据关联算法与改进的概率数据关联算法,后者拥有两个关联波门,使用置信度描述交汇区域内点迹的关联概率系数。对异常航迹进行定义和分类。设计实验来对比前馈神经网络模型、马尔科夫模型和卷积神经网络模型对航迹预测的结果。卷积神经网络预测航迹的误差值是最小的,卷积神经网络可以实现长时间地、精确地预测航迹。聚类异常航迹检测算法实现航迹段聚类,把航迹的信息熵和飞行距离作为航迹异常值的两个因子,然后计算每条航迹的异常值,检测异常航迹。航迹集合中有六条异常航迹,聚类算法计算的这六条异常航迹的异常值均大于阈值,算法准确地检测出异常航迹。设计实验,对比航迹预测的异常检测结果和离线异常检测结果,在实验中,航迹预测异常检测算法计算的六条异常航迹异常值大于阈值,有一条误判航迹,整体上,预测异常检测结果准确率较高。深度学习模型可以抽取航迹的重要特征。自编码器模型较多地用于航迹检测领域,变分自编码器模型用于航迹检测领域较少,创新点是本论文提出使用变分自编码器模型对航迹检测。变分自编码器模型异常航迹检测算法对航迹数据重建,把具有低重建概率的航迹作为异常航迹。设计实验,实验数据为卷积神经网络模型预测后的航迹,分析和比较自编码器模型和变分自编码器模型对航迹检测的结果,两个算法具有较高的检测准确率。航迹检测系统,作为应用工程部分,研究系统的研发背景、需求分析、总体设计、详细设计、系统功能测试等。作者参与研发航迹检测功能部分,采用卷积神经网络模型预测航迹未来位置信息,然后采用异常航迹检测算法对航迹进行检测。
其他文献
红外辐射是频段位于可见光和太赫兹微波之间的一类电磁波,温度处于绝对零度以上的物体,都会产生具有一定强度的红外辐射。基于红外探测基本原理,红外成像能够完成全天时探测任务,因此红外探测在很多领域得到了广泛的研究与大规模的应用。由于红外光学镜头、焦平面阵列响应特性与制备工艺、模数信号处理电路等多方因素影响,得到的红外图像难以达到理想效果,存在非均匀性噪声大、信噪比低、边缘细节模糊等问题。随着基于大数据驱
学位
基因组变异与人类复杂疾病/性状具有密切联系,对其进行合理的分析对于疾病致病机理的研究具有重要意义。拷贝数变异(Copy number variation,CNV)是基因组变异的一种重要形式,在癌症基因组变异中占相当大的比重,其长度往往在几千碱基(KB)至几百万碱基(MB)之间甚至更长。众多研究表明,基因组CNV往往隐含了癌症驱动基因或抑制基因。在肿瘤样本中对CNV进行准确的检测,能够对癌症疾病的分
学位
作为对地观测的重要手段,高光谱遥感图像凭借其丰富的光谱信息和“图谱合一”的数据特性,受到了学者们的广泛关注,尤其是基于深度学习的高光谱目标检测技术,成为了当下的研究热点之一。但高光谱图像庞大的数据量和复杂的图像背景在一定程度上限制了基于深度学习的高光谱目标检测技术的发展与应用。其所面临的问题主要有:(1)高光谱遥感图像标注工序繁琐困难,难以为数据驱动的深度学习模型提供大规模有标注的训练样本,极大地
学位
半导体激光器(Laser Diode,LD)泵浦的全固态纳秒激光器已被广泛应用在科学研究、材料制造、生物医学以及军工等领域。随着激光技术的发展,人们对调Q激光器提出了新的要求,激光器朝着微型化、便携式方向发展。目前,一种LD端面泵浦的被动调Q激光器在微型化方向具有发展潜力,在实现小型化的同时,能够输出较高的单脉冲能量。这种被动调Q微型激光器输出激光脉冲的脉宽在纳秒量级,能量在毫焦量级。由于被动调Q
学位
近些年以来,随着计算机性能的不断提升和神经网络的不断改进,深度学习的研究取得了巨大的进步,俨然成为当前人工智能兴起的核心。在包括图像识别,文本生成,语音识别以及图数据分析等领域,深度学习都得到了广泛的应用和研究。然而最近的研究表明如此频繁使用的深度学习模型是不可靠的。图的深度学习模型在各种图分析任务中取得了惊人的表现,例如节点分类、链接预测和图聚类。而深度学习系统的不安全问题并没有能够在非欧数据领
学位
人脸活体检测技术能够解决由伪造人脸攻击带来的安全隐患问题,目前已经广泛应用在身份认证系统中。基于单帧图像的人脸活体检测算法无法利用动态信息和多模态信息,难以抵抗光照、场景和其他环境因素的影响,导致算法的泛化能力差。本文通过对多颜色空间下的真实人脸和伪造攻击进行差异性分析,设计了自适应颜色空间提取和多维度颜色空间特征融合的网络模型结构,实现对原始图像数据在颜色空间层面的信息拓展和多维度融合,提高了算
学位
近年来随着遥感技术的发展,遥感卫星在国防军事和民生经济领域发挥着越来越重要的作用,遥感图像目标检测任务也成为了图像处理领域的热点问题。由于遥感图像中存在背景复杂,目标尺度变换大等问题,相比于传统目标检测算法,基于深度学习的目标检测算法鲁棒性较好,检测精度更高,性能更优越。但是在实际应用中,深度学习算法难以部署到卫星等资源受限平台,检测速度也难以满足实时性的需求。针对上述问题,本文针对遥感图像目标检
学位
碳元素能形成无穷无尽、不同形式的同素异形体,这使得它在一众化学元素中显得尤为独特。自古以来,碳元素就以各种形式被广泛应用,在现代科学的加持下,人类更是有了能够随心所欲操纵晶格结构的能力,这更加拓宽了碳元素的应用场景。以金刚石为代表的超硬碳材料便是其中极具代表性的一类,所谓超硬材料,指的是维氏硬度大于40 GPa的材料,正如它们的名字所述,这些材料的共同特点就是硬度极高。这一特性使得该类材料在航空航
学位
随着国家经济和电商领域的全方位飞速发展,我国物流行业的业务需求量越来越多,物流总费用也是在持续增长。在物流打包过程中,软材料的打包成本与装箱表面积成正比,合理的装箱方案可以减小装箱表面积,降低物流成本,从而大大减少企业物流成本,提高企业竞争力。针对用户在线购买商品订单的软材料打包装箱过程,找到一种可以获得最小表面积的装箱方案能有效降低物流总费用,减小企业压力,因此对最小化表面积的三维装箱问题的深入
学位
随着通讯进入5G时代,智能手机及健康监测器等便携式电子设备发展迅速,普及率越来越高,成为了人们日常生活中不可或缺的一部分。与此同时,人们对便携式电子设备的体积、重量以及续航能力提出了更高的要求。为了在不增加便携式电子设备体积和重量的前提下提高设备的电池使用寿命,提高为设备供电的转换器芯片的转换效率逐渐成为研究焦点。此外,智能设备中的高性能处理器工作模式较多,处理器从低功耗空闲模式到高速活动模式之间
学位