论文部分内容阅读
硒化镉(CdSe)是直接跃迁宽禁带隙的Ⅱ—Ⅵ族化合物半导体材料。由于它具有平均原子序数较高,禁带宽度较大,晶体中电子和空穴迁移率较大,载流子迁移率-寿命积较大等良好的物理性能,使得CdSe成为一种很有前途的制作室温核辐射探测器的新材料。而在制作CdSe室温核辐射探测器的工艺过程中,电极的制备工艺是最为关键的工艺之一。 本文在系统论述核核辐射与物质的作用原理和探测器结构特性基础上,分析探测器表面电极制备工艺对CdSe核辐射探测器漏电流、极化的影响,得到如下创新性结果: 241Am的γ射线与CdSe单晶材料作用方式主要为光电效应,从理论上计算出γ射线入射到CdSe材料的深度及一定偏压下的输出脉冲,推断出Am241的γ射线只是在晶片表面与CdSe的原子发生光电效应,且在一定条件下所产生的脉冲信号大小为毫伏级。 运用XPS光电子能谱对湿氧、干氧制备CdSe晶片表面氧化层的成分进行分析发现,湿氧钝化后CdSe(110)表面上形成化合物为SeOx(x<1),SeO2、Cd(OH)2和CdCO3,生成高电阻的稳定氧化层,出现Se偏析现象,而干氧钝化后CdSe(110)表面形成CdSe本底、过渡态SeOx(x<1)、Cd(OH)2、以及吸附的O2、CO2、和H2O,也出现Se偏析现象。 采用C和In两种电极材料制备出了MSM、MIS及单面栅极结构的CdSe室温核核辐射探测器并进行Ⅳ测试,结果发现:在MSM结构中影响探测器漏电流的因素为电子注入、电极与CdSe半导体材料的接触势垒和CdSe接触