论文部分内容阅读
量子点敏化太阳能电池,作为一种新型太阳能电池,是有望成为替代硅系太阳能电池的低成本、高效率的太阳能电池之一。但是,量子点敏化太阳能电池的性能显著地受其半导体氧化物、量子点敏化材料、对电极及电解液等的影响。因此,本文以改善光伏性能为目标,制备了CdS量子点敏化TiO2多孔薄膜和TiO2纳米管阵列以及CuInS2量子点敏化TiO2纳米管阵列光阳极和碳对电极,研究了电池结构对太阳能电池性能的影响。主要研究结果及创新点如下:1.采用丝网印刷法制备纳米TiO2多孔薄膜,采用连续离子层吸附与反应法制备CdS量子点敏化TiO2多孔薄膜,采用碘电解液/Pt对电极体系时,TiO2多孔薄膜厚度与CdS量子点沉积量都对量子点敏化太阳能电池的光电转换性能有重要影响,随着TiO2多孔薄膜厚度和CdS量子点沉积量的增加,量子点敏化太阳能电池的光电转换性能均有一个先增加后降低的趋势。2.采用活性炭为原料在FTO导电玻璃上制备碳薄膜对电极,并考察了不同对电极对太阳能电池性能的影响。结果表明,与Pt对电极相比,碳对电极可明显提高CdS量子点敏化太阳能电池的光伏性能。交流阻抗谱分析表明,碳对电极可降低对电极/电解液的界面电阻,有利于电荷转移。3.制备了CdS量子点敏化TiO2纳米管阵列光阳极,结合多硫电解液与Pt对电极,研究了太阳能电池的光电性能。结果表明,随着CdS量子点沉积量的增加,CdS量子点敏化TiO2纳米管阵列电池的光电转换效率先增加后降低。在相同的条件下,CdS量子点/TiO2纳米管阵列电池的短路电流密度提高,说明TiO2纳米管阵列巨大的比表面积更有利于CdS量子点的沉积。4.采用溶剂热法制备三元硫化物CuInS2量子点,将CuInS2量子点沉积到双官能团分子功能化的TiO2纳米管阵列上,制备CuInS2量子点敏化TiO2纳米管阵列太阳能电池,并对其光伏性能进行了研究。结果表明,采用这种预先合成量子点的方式制备的量子点敏化太阳能电池效率较低,采用CuInS2/CdS量子点共敏化TiO2纳米管阵列,可以提高太阳能电池的光电转换效率。