论文部分内容阅读
随着微波技术的进一步发展,高频微波成为研究和发展的一个主要趋势,它在通信、雷达、制导等方面都有着非常重要的地位。而作为高频微波源典型应用的光电振荡器能够产生高频率(从几GHz到几百GHz)、高Q值(1010)、低相位噪声的高品质信号,而且具有可调谐性和光、电两种输出,因而成为高频微波技术研究的新热点。受到国内外研究者的广泛关注。本文首先对基于高Q微环腔光电振荡器的结构进行了介绍,并对该基于高Q微环腔光电振荡器系统的核心单元——光纤环形谐振腔进行了理论研究。随后对该光电振荡器的起振条件(阈值条件和相位条件)、频谱和相位噪声等方面进行了具体的分析。最后,通过分析温度对光纤及滤波器等光电振荡器环路中的温度敏感单元的作用,详细地介绍了温度对光电振荡器的调节机理。通过对光电振荡器系统的理论研究和详细分析,本文首先对传统长光纤系统的延时效应进行了研究,并且用高Q光纤微环腔代替长光纤作为振荡回路中的延时储能单元,研究了系统的延时效应,并且得出光纤环腔Q值与OEO系统Q值,系统延时的关系,使用光纤环腔作为光电振荡器的延时器件,在取得相同延时作用的条件下,对系统体积进行了很好的优化,从而也就为光电振荡器的实用化和集成化研究提供了一种新的可行性方案。通过频谱分析仪上相位噪声测试模块测试中心频率2.01 GHz处相位噪声为-57.7dBc/Hz@10kHz。为了改善相位噪声,我们加入锁频电路模块优化系统结构,通过反馈调节锁定激光器的输出光频率,使光子在通过谐振腔时始终处于谐振状态,在锁频电路作用前后OEO系统中心频率为10.4G Hz处相位噪声分别为-71.34 dBc@10kHz和-91.35dBc@10kHz。相位噪声降低约20 dBc。最后,对该系统的温度效应进行了比较详细的分析。通过加入温控模块,将光纤环腔置于温控系统中,在30℃条件下OEO在20分钟内该高Q微环腔OEO的频率偏移为-0.35 ppm。具有比较好的短期频率稳定性。同时,通过调节温度从20-50℃,中心频率偏移2.24 MHz。说明通过调节温度该系统具有一定的频率可调谐性。