【摘 要】
:
砌体结构由块材、胶结材料组成,在工程中应用广泛。一般胶结材料强度低、耐久性差,是影响砌体结构承载能力的主要因素。为改善砌体柱的受力性能,提出采用超高强度、耐久性能优异的超高性能砂浆(Ultra-High Performance Mortar,UHPM)。本文首先对适用于砌体结构的UHPM的配合比、工作性能和力学性能进行试验研究,在获得UHPM制备参数的基础上,将其运用到石砌体中,并进行了UHPM石
论文部分内容阅读
砌体结构由块材、胶结材料组成,在工程中应用广泛。一般胶结材料强度低、耐久性差,是影响砌体结构承载能力的主要因素。为改善砌体柱的受力性能,提出采用超高强度、耐久性能优异的超高性能砂浆(Ultra-High Performance Mortar,UHPM)。本文首先对适用于砌体结构的UHPM的配合比、工作性能和力学性能进行试验研究,在获得UHPM制备参数的基础上,将其运用到石砌体中,并进行了UHPM石砌体(Stone Masonry Column with UHPM,以下简称UMC)的短柱受压试验,考察了其破坏过程、破坏形态和极限承载力。本文的主要工作与成果如下:(1)在超高性能混凝土(Ultra-High Performance concrete,UHPC)的制备原理基础上,进行了UHPM的配合比制备设计,综合分析了水胶比、胶砂比和粉煤灰掺量等因素对UHPM的稠度、保水性、抗折强度和抗压强度的影响。结果表明:UHPM的保水性超过99%,不会产生泌水现象;水胶比范围在0.13~0.16之间变化时,可满足现行标准的砌筑砂浆稠度要求;砂胶比宜为1.2,粉煤灰掺量不应大于0.2;考虑石英砂级配的UHPM强度更高,建议考虑细骨料的粒径级配。(2)开展了6组共计18个(每组3个试件)UHPM石砌体短柱的受压试验研究,主要考虑砂浆强度等级和偏心率对UMC试件承载力的影响。结果表明:砂浆强度等级与偏心率均会对试件的裂缝分布和破坏形态产生影响;UMC试件中石块与UHPM协同工作性能较好;UMC短柱的开裂和极限荷载分别是普通砂浆石砌体短柱的1.59和1.87倍;偏心率为0.1、0.2和0.3时,UMC试件的开裂荷载分别是轴压试件的0.61、0.50和0.38倍,极限荷载分别是轴压试件的0.54、0.43和0.28倍。(3)UHPM可明显改善石砌体中石块的复杂应力状态,使得石块主要受压应力作用,UMC试件的破坏模式表现为石块被压碎。当以石块与UHPM横向变形协调为条件时,建议石块与UHPM的强度比值范围在0.77~0.85之间。(4)现有规范的砌体抗压强度计算方法不适用于UMC。基于GB 50003-2011抗压强度计算方法,综合考虑砂浆强度、石块与砂浆厚度比的影响,提出了UMC的修正计算方法,计算值与试验结果吻合较好。针对现有理论分析方法计算的偏心影响系数会低估UMC试件承载力的折减,基于对偏心影响系数的回归分析,提出了适用于UMC偏心受压承载力计算公式。
其他文献
石膏质岩是一种常见的膨胀岩,具有膨胀时间长且膨胀压力不稳定的特点,给穿越该地层的隧道支护设计增加了难度。和其它让压支护相比,缓冲层复合支护体系具有能在整个运营期内持续让压的优点,因而更适合在石膏质岩隧道等长期大变形隧道中应用。但现有研究在缓冲层作用机理和缓冲层复合支护体系优化设计方面仍存在不足。本文以山西南吕梁山隧道病害段为依托,对缓冲层复合支护体系进行了系统研究。首先在三层厚壁圆筒模型理论推导的
现行的普通钢筋混凝土增大截面法加固墩柱自重增大较多,且不能从根源上解决耐久性问题。为此提出采用UHPC加固墩柱,其在相同的承载力加固效果下,混凝土总体用量可以大大减少,且能较好地解决耐久性问题。但该加固方法结合了两种混凝土材料,其受力特性和损伤机理较为复杂,极限状态和破坏模式不明确。因此,对提出的UHPC加固墩柱的受压性能进行试验研究,为该新型加固方法的设计提供试验和理论依据。主要研究工作和结论如
对装配式建筑结构而言,装配工艺及装配质量是其充分发挥承载力及抗震性能的关键。灌浆套筒连接作为装配式建筑构件的主要连接形式,在装配式建筑构件拼装施工中,施工工艺的差异以及复杂的现场施工环境,可能导致灌浆套筒内部出现不同程度的损伤,产生例如裂纹、脱空等质量缺陷,最终导致套筒连接效果不佳,威胁建筑主体安全。考虑到目前对于灌浆套筒连接质量尚无切实可行的无损检测方案,本文提出基于Lamb波时间反转法的灌浆套
在桥梁工程中,钢筋用量大、造价高,是影响工程成本的重要因素。但是,传统的路桥钢筋工程普遍存在钢筋原材利用率低、钢筋下料方案制定困难、浪费严重等现象。随着近几年建筑信息模型(Building Information Modeling,BIM)技术在国内的兴起与推广,结合以算据、算法、算力为支撑的智能技术,能有效提高国内建筑业的信息化与智能化发展水平。本文旨在将BIM技术与智能优化算法相结合,使用Re
单组分碱激发镍渣水泥作为一种新型绿色胶凝材料,有效解决镍渣的污染问题,提升镍渣利用价值,又能减少CO2排放与天然资源消耗,对保持镍行业的持续健康发展具有重要战略意义。目前碱激发镍渣水泥的研究主要集中在双组分的配比设计方面,但关于单组分碱激发镍渣水泥的氯离子渗透性方面研究较少。为此,本文通过试验研究了前驱物钙硅比、铝硅比、碱激发剂种类、Na2O当量、水胶比、球磨制度对单组分碱激发镍渣混凝土抗氯离子渗
随着我国大跨度桥梁不断涌现,大型、超高的钢管贝雷式支架越来越频繁地被应用于桥梁建设中。而钢管支架和贝雷梁的稳定问题比较突出,是桥梁施工中的主要风险来源。目前在进行钢管贝雷式支架设计时,一般是把贝雷梁视为等效梁结构,忽视杆件的局部稳定对结构整体受力的影响,对贝雷梁的整体与局部破坏模式还未有全面的认识;而下部的钢管支架在计算时计算长度取值和横向连接还不规范,这些因素增加了钢管贝雷式支架应用的风险。因此
超高性能混凝土(UHPC)是一种具有高流动性、高强度、高耐久性、高韧性等优点的新型水泥基复合材料,将其作为装饰材料来使用能够解决普通装饰混凝土抗拉强度低、韧性差、自重大、易开裂等缺陷,有利于拓展其应用范围,实现结构装饰一体化。本文采用高白度的原材料制备具有装饰效果的UHPC,研究材料组成对白色UHPC流动性、抗压强度、抗折强度和弯曲韧性的影响。完成的主要工作和成果如下:1、通过设计以石英砂细度模数
随着我国经济增长以及隔震技术日益成熟,我国隔震结构逐渐普及并向高层隔震结构过渡,而目前隔震结构设计分析基于常规短周期地震动,忽略了低频成分丰富的长周期地震动影响。高层隔震结构因其较大的自振周期,在长周期地震动作用时易产生不同程度的共振,使结构产生较大地震响应。因此,需要对长周期地震动作用下高层隔震结构的地震响应及控制措施进行分析研究。本文主要包含以下研究内容:(1)从PEER数据库选取了60条长周
高延性水泥基复合材料,简称ECC(Engineered Cementitous Composites),具有和金属相似的显著应变硬化特征以及多缝开裂的特性。ECC控制裂缝宽度的能力,可避免有害物质侵入结构内部而引起钢筋腐蚀、混凝土结构膨胀的问题,从而提高建筑结构的耐久性和安全性。喷射技术是一种施工效率高,工程适应性强的无模板施工方法。研究一种可进行喷射施工的ECC材料既能够提高建筑结构寿命,又能在
近年来国内外跨海桥梁建设发展迅速,覆盖区域越来越广,在海域活动断层附近修建桥梁已经成为工程建设中不可避免的问题。跨海桥梁结构位于复杂的海洋工程地质场地中,海域场地中海水层对地震动传播的影响会导致海域与陆地地震动之间存在明显的特征差异。然而目前对近断层脉冲型地震动的研究仅限于陆地场地,考虑到海域场地与陆地场地地震动传播的差异、近断层地震动对大跨度桥梁很强的破坏力以及实测海域近断层地震动记录的匮乏,有