论文部分内容阅读
正渗透(Forward Osmosis,FO)作为目前膜分离技术研究领域的热点在高盐水零排放、海水淡化综合利用以及垃圾渗滤液处理等领域的技术优势已初见端倪。而内浓差极化(ICP)仍然是FO进一步推广的技术障碍之一,双面聚合的方法被认为是减缓FO工艺内浓差极化的有效手段。本课题研究内容是采用商业聚醚砜(PES)微滤膜作为基底膜,通过聚乙烯醇(PVA)交联聚合+界面聚合的方式改性微孔滤膜使其具备脱盐功能。在此基础上通过PVA中掺杂氧化石墨烯(GO)进行涂覆层改性,使FO膜的结构趋于完整,性能趋向稳定,同时在一定程度上提升膜的水通量、抗污染等特性。实验中制备的双面正渗透膜分别采用标准测试方法和模拟污染物进行正渗透膜参数测定,以膜的截盐率、结构参数、水通量、盐通量等重要参数对FO膜进行综合评价。首先,对基底膜正反两面分别进行界面聚合和PVA交联聚合,探究所制备的双面正渗透膜(S-PVA膜)的结构构型、活性层表面微观形貌以及正渗透过程中的运行效能。实验结果表明:经过涂覆,S-PVA膜表面仍然观测到明显的膜孔;PVA涂覆层的粗糙度要小于界面聚合层。同时膜的润湿性测试显示,PVA涂覆层的亲水程度显著增加,而界面聚合层的亲水程度则下降明显。膜的正渗透测试中分别采用AL-FS模式(活性层对着原料液一侧)和AL-DS模式(活性层对着汲取液一侧),两种模式下均在PVA涂覆液浓度为0.4wt%时达到最大水通量,分别为17.01LMH(AL-FS)和23.95LMH(AL-DS),此时的盐通量分别为6.3g MH(AL-FS)和9.9g MH(AL-DS);而在涂覆液浓度为0.8wt%时,有最大的截留污染物值分别为乳化油(W-oil)94.8%、牛血清白蛋白(Bovine serum albumin,BSA)93.6%、海藻酸钠(Sodium Algiante,SA)95.86%。其次,针对S-PVA膜初步改性后截盐率不高和稳定性不足的问题,采用PES基底膜正反两面均做PVA涂覆,进一步在正面做界面聚合。实验结果表明:因为有了PVA交联网络对微滤膜表层大孔隙孔洞的填充,对在其上生成的聚酰胺层起到很好的支撑,使得聚酰胺活性层较S-PVA膜在均匀性上有大幅的提升,结构更加完整致密,表面也更加光滑,同时聚酰胺一侧的润湿性测试表明,PVA涂覆缓解了聚酰胺本身带来的疏水特性。膜的正渗透测试中,AL-FS模式与AL-DS模式两种模式下水通量也维持在17LMH和25LMH,与S-PVA膜相当,但盐通量的波动小于S-PVA膜,表明膜的稳定性要明显优于S-PVA膜。最后,在前两者的基础上对膜的制备工艺进一步优化,在交联液PVA中掺杂GO再进行如D-PVA过程涂覆,并对该膜(D-PVA/GO膜)的结构性能、运行效能等进行综合探究。实验结果表明:GO的掺杂有效的改善PVA涂覆效果,使得膜表面生成的PVA/GO交联网络更加致密,基本能有效掩盖微滤膜表面孔隙,同时保证PVA交联液不向膜内深处渗透,减少膜孔堵塞引起的传质阻力。测试数据表明:GO掺杂于PVA中交联能够增加膜的水通量,在所探究的GO掺杂浓度范围内,D-PVA/GO膜较D-PVA膜水通量最高提升23.8%,对盐的截留率可达98.5%,对污染物W-oil、BSA、SA的截留率也得以提升分别能达到99.3%、98.9%、99.0%。膜的结构参数也较前两种膜波动区间更小,这表明随着GO的掺杂及改性过程的完善,膜的结构更加稳定,使该膜在缓解浓差极化、提升抗污染性能等方面有了明显的提高。总之,通过双面改性的方式制备的正渗透膜在水通量和盐返混方面均能实现较高的性能,而PVA涂覆液通过GO的掺杂,所制备的D-PVA/GO膜在稳定性、水通量和截盐率都保持较高的状态,其中抗污染能力较前两者有明显的提升。研究结果表明,GO改性双面FO膜有望在实际应用中改善目前商品FO膜的一些不足。