融合多尺度信息的弱监督甲状腺癌症分类方法研究

来源 :吉林大学 | 被引量 : 0次 | 上传用户:asd_012
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
数字切片扫描技术和高性能运算硬件的不断完善促进了深度学习方法在组织病理学领域的广泛应用。现有工作主要基于多示例学习框架,使用卷积神经网络实现对病理切片的分析。然而,这些模型在分析病理切片方面的性能不佳,主要原因包括:1)卷积神经网络的模型参数过大;2)多示例学习中使用全切片图像级别的标注带来的噪声干扰。为了构建高效轻量化模型对病理图像进行分类的同时减弱噪声标签的干扰,本文提出了一种融合多尺度信息的端到端多示例学习框架,具体如下:(1)提出了一种高效特征融合的金字塔轻量化框架。卷积神经网络作为组织病理学领域常用的深度学习方法通常面临着两个问题:1)基于卷积神经网络框架的方法虽然达到了很高的准确率,但增加了模型参数和计算复杂度;2)平衡模型精度和计算量之间的关系,使其在轻量化的基础上尽可能的保持并提升模型的分类精度。在本文中,我们提出了一种基于视觉深度自注意力网络(Vision Transformer,ViT)的新型多示例学习轻量化模型,该模型通过结合多示例和多感受野有效地解决了上述问题。具体而言,首先,为了减少模型参数量,引入了轻量化词元聚合的深度自注意力网络(Tokens-to-Token Vision Transformer,T2T-ViT),可代替卷积神经网络作为模型的特征提取器。然后,通过结合多感受野的图像金字塔提升模型性能,使其可以同时考虑到细胞结构的局部与全局特征。实验结果表明:金字塔轻量化框架极大地减少了模型参数量和计算复杂度,并且分类效果明显优于卷积神经网络的方法。(2)提出了一种基于特征损失的多尺度端到端架构。多示例学习作为组织病理学领域常用的弱监督学习方法通常面临着两个问题:1)在数学假设下,标签为正的全切片图像的所有示例都是正的,这不完全正确且在训练中存在噪声标签的干扰;2)单尺度数据下缺乏从多个角度获取图像信息的能力。在本文中,我们提出了一种融合多尺度示例信息的端到端模型,该模型通过整合特征损失和融合多尺度示例信息解决了上述问题。具体而言,首先,为了减弱噪声标签的影响,构建端到端模型将全切片图像级别和示例级别的信息整合到一起。然后,为了获得更加丰富的示例级别的信息,通过多感受野金字塔将对应尺度下的示例级别的损失相加作为总体示例级别的损失。实验结果表明:多尺度端到端架构分类效果明显优于全切片级别或示例级别的方法。
其他文献
随着我国社会经济的不断发展,汽车保有量不断增加,随之带来的燃油消耗、道路拥堵和交通安全等问题也日趋严重。商用车作为目前货物运输的主要途径,截至2021年1月我国商用车货运规模占总货运规模的74.4%,同时载货商用车燃油消耗占总燃油消耗量比例超过50%,且仍有上升趋势。因此如何提高商用车的行驶安全性及燃油经济性具有重要意义。随着通信技术、控制方法和传感等技术的不断发展,先进的商用车编队控制方法被证明
学位
随着不可再生的化学燃料能源的不断消耗,寻找绿色、可持续与经济的新能源就成了当代能源化学的重要课题。氢气正是一种优异的洁净能源。而电解水制取氢气(HER)是一种简便的电能存储方法。电解水制氢需要催化剂来促进电解水反应的进行。目前一些稀有金属基催化剂表现出良好的电催化性能,但是由于成本高限制了其广泛使用。于是人们试图开发便宜的过渡金属基电产氢催化剂来替代贵金属基催化剂。铜、铁、钴、镍等过渡金属基催化剂
学位
多取代吡咯和噻唑类化合物具有抗病毒、抗炎、抗肿瘤活性,本身可作为药物使用,亦作为药物合成的中间体,在药物、农药领域有广泛的用途。迄今为止,尽管这两类化合物的合成研究已有很多文献报道,但电化学方法合成这两类化合物的研究工作非常有限,发展绿色有效的电化学合成这两类化合物仍然是非常意义的。鉴于此,本论文着眼于研究电化学合成方法,合成这两类重要化合物。(1)以β-二羰基化合物、醛和胺底物合成多取代吡咯化合
学位
车辆安全驾驶一直是交通领域重要的研究课题,自动驾驶车辆由于减少驾驶员的参与,可以避免大部分由人为因素造成的交通事故,提高驾驶安全和驾驶效率。在驾驶行为研究中,车辆跟驰行为和换道行为是最常见也是最基本的两种驾驶方式,有调查显示由于不合理换道引起的事故占比较高,而智能网联自动驾驶车辆换道行为研究有助于避免该问题的产生。结合国家科技部项目“车车耦合机理与协同安全方法”(项目编号:2018YFB16005
学位
由于人们对气候问题越来越关注,迫切希望能够减少化石燃料的使用,以降低二氧化碳排放量,多年来,人类一直在寻找更清洁、可持续的燃料。在众多可再生能源中,氢能以其高热值、无污染一直备受关注,尤其是现在,氢能将迎来前所未有的发展空间。考虑到氢化酶能够在温和的条件下高效地完成氢气生成和氧化,为此我们选题为:镍、铜、锌、铁、钯配合物的合成与催化氢气生成及氧化性能的研究。本文主要研究内容如下:1、设计并合成了6
学位
符号网络是大数据时代的一种数据表现形式,由节点、节点间正负链接组成。符号网络中的任务在现实生活中有非常广泛的应用,如链接预测、社区发现、节点分类等。但符号网络的节点和链接需要高维向量表示,导致模型计算复杂的问题。表示学习是一种非常有效的学习节点嵌入方法,通过保留网络中拓扑结构、顶点内容和其它辅助信息,将网络顶点嵌入到低维向量空间中。所以用表示学习方法可以将符号网络任务中所需的信息提取出来,用低维向
学位
精准识别癌症患者的分子亚型对癌症的个体化治疗、靶向药物研发和预后分析具有重要意义。大规模多组学数据和基于数据驱动的方法能够促进对癌症分子分型的理解和预测。现有大多数基于机器学习的方法通常依赖于单一组学数据,而未能整合多组学数据为分子分型提供更全面的信息。一些基于神经网络的方法,考虑了分子分型的复杂非线性,但忽略了基因特征筛选和样本之间的关系。图神经网络能够利用样本相似性图中样本之间的信息传递和聚合
学位
关系抽取指从非结构化文本中抽取出实体间的关系,是自然语言处理中重要的研究方向。在深度学习时代,监督学习下的关系抽取模型已经取得很高的准确度,但其要求大量带标注的训练语料,然而在现实世界中关系种类繁多,文本数据复杂,提供大量的带标签的训练数据需要耗费巨大的人力。针对以上问题,远程监督的思想被提出,它基于一个假设,如果知识库中存在两个实体表达了某种特定关系,那么语料中所有含有这两个实体的句子都表达了这
学位
牡丹皮,又称丹皮,是毛茛科植物牡丹Paeonia suffruticosa Andr.的干燥根皮,广泛应用于中药名方。现代药理学研究表明,牡丹皮具有调节血糖、缓解糖尿病并发症、抗炎等多种药理作用。多糖作为一种水溶性大分子,其在传统中药水煎液中占据很大的比例。研究报道,多糖具有多种生物活性,如免疫调节作用、调节肠道菌群、抗炎、抗肿瘤、抗氧化应激等。多糖也是牡丹皮的主要活性成分之一,目前对于牡丹皮多糖
学位
近些年多智能体强化学习的相关研究备受关注,其中值分解问题的相关研究引起了研究者的广泛重视。在多智能体值分解方法中,为提高多智能体策略的性能,环境整体的行为值函数可以表示为每个智能体值函数的组合。然而,目前的值分解方法中主要存在两方面问题:(1)值分解相关算法模型存在学习效率较低的问题,而算法的学习效率是重要性能指标,提高模型学习效率具有重要的研究价值;(2)值分解相关模型存在探索能力不足的问题,而
学位