【摘 要】
:
交通运输是一个城市的经济命脉,城市交通系统是一个复杂、庞大的系统,具有不确定性、多变性、随机性。随着城市车辆数量的不断增加,传统的交通信号配时方案无法应对,无论国内外,每年因交通拥堵造成的多方面损失都是巨大的。而智能交通信号配时技术的出现,突破了传统交通信号配时的危机和瓶颈。近些年来,随着智能技术的发展,基于深度强化学习(DQN)的交通信号配时技术成为智能交通信号配时中的主流。基于DQN的交通信号
论文部分内容阅读
交通运输是一个城市的经济命脉,城市交通系统是一个复杂、庞大的系统,具有不确定性、多变性、随机性。随着城市车辆数量的不断增加,传统的交通信号配时方案无法应对,无论国内外,每年因交通拥堵造成的多方面损失都是巨大的。而智能交通信号配时技术的出现,突破了传统交通信号配时的危机和瓶颈。近些年来,随着智能技术的发展,基于深度强化学习(DQN)的交通信号配时技术成为智能交通信号配时中的主流。基于DQN的交通信号控制较传统的信号配时技术更具有灵活性、自适应性,能根据实时的交通路网状态采取最佳的交通信号控制策略。但基于DQN的交通信号配时技术也存在许多不足之处,往往会由于值过高估计导致训练过程中神经网络参数不断跳跃波动、难以收敛等问题。并且随着路网规模的过大,DQN中的神经网络参数量和卷积计算量会变得十分庞大从而影响算法效率。本研究针对基于DQN的交通信号配时模型存在的以上常见问题进行了改进,设计了基于Double-DQN的智能交通信号配时模型。因为路网中各道路之间具有关联性,所以将路网划分为多个相互交叉区域并分别建立感受野以保证道路之间这种关联性,从而达到相互协同控制。交通流效率受多因素影响,考虑到道路上车辆密度和道路上车辆平均行驶速度都是影响路网中车辆行驶效率的主要因素,所以在路网特征数据收集阶段,收集了每条道路上双向特征,其中包括道路上的车辆密度、近十秒内道路上车辆平均行驶速度。为了方便将路网特征输入到预测神经网络中,将以上特征数据进行规范化处理,从而得到多通道的路网特征矩阵。为了更好地获取交通流中的时间维度特征,采用了3D卷积预测神经网络以捕获路网不同时间片之间的特征影响。建立双网络的神经网络来克服基于DQN的交通信号配时模型在训练过程中参数波动幅度过大的问题。使用了经验回放技术以打破训练数据之间的相关性。借鉴Inception网络模型,在预测神经网络中用多个小的卷积核替代某个大的卷积核,这样一来不仅减少了网络的参数量,还使得卷积神经网络模型的非线性映射、泛化能力得到了提升。最后在预测神经网络中的每两层神经网络中间加入1*1卷积核,以解决因网络深度加深而导致的卷积运算量变大的问题。在实验阶段,设置了两个评估控制算法性能的指标:所有交叉口处车辆的平均滞留时间、滞留于路网中的车辆数量。并搭建了SUMO交通仿真平台,用以模拟现实交通的车辆行驶情况,通过采集大量仿真实验数据,对比性能评估指标,最终验证了本研究提出的智能交通信号配时算法的优越性。
其他文献
近年来,随着网络通信技术和汽车电子技术的不断发展,网络设备愈发普及,硬件装置成本也下降了不少,终端设备可以安装很多种网络接口,并且这些装置在车辆上的网络接口也越来越多样化。如今,通过在车辆网络中安装网络接口可以实现该车辆行驶过程中与其他车辆、路边停放车辆和路面设施之间的无线通信,当汽车在中低速行驶或停泊时,通过这种网络就可以为机动车提供各类信息,包括机动车的安全信号传递、智能道路资讯服务、多媒体数
凭借不断更新的无线网络技术、卓越的智能设备和持续革命性的计算能力,物联网在生产生活的各个领域得到了广泛的应用,为我们带来便捷的服务和巨大的价值的同时,由于其数量的指数增长和种类的复杂多样,面临着数据的安全性和隐私性的挑战。可信认证技术是物联网设备进入物联网系统的第一道屏障,因此,如何做到可信认证是保护数据安全和隐私的关键所在。近些年可信赖的区块链技术因其具有防篡改、去中心、可溯源的优势,被持续深入
本文主要针对空战中在强干扰环境下对目标的识别与跟踪算法进行研究。敌方战斗机为了躲避我方导弹的识别与跟踪,会人为地释放干扰弹,产生强干扰。强干扰会严重影响红外制导、激光制导以及雷达制导等对目标的识别与跟踪,甚至有可能会导致丢失目标。本文对可见光图像的战斗机识别与跟踪算法进行研究。主要分析了目前应用最广泛的统一的实时目标检测第五版(YOLO v5)目标识别算法和高效卷积算子(ECO)目标跟踪算法,并进
随着计算机图像处理、5G移动通信等技术的不断发展,模拟训练系统被应用到越来越多领域。通过在模拟训练系统中对现实复杂交通现象进行仿真,能够排除空间、时间、天气等诸多限制因素的影响,提供可持续的训练与研究,具有一定的研究意义与应用价值。本文基于模块化的思想,分析运动车辆精确定位模拟训练的需求,将系统整体结构进行了实现,主要研究内容包括:(1)阐述了多种无线定位方式,并按照基站铺设、定位误差、适用程度三
一直以来,由于我国边境条件复杂,单一传感器的识别效果有限,且非常容易受到气候、能见度、人为伪装等多种因素的影响,导致识别效果不佳。本文主要研究了一种在复杂背景下将不同类别的传感器组合成簇的方法,能够协同、动态的对入侵目标进行跟踪识别。多传感器协同探测不仅增加了信息的互补,提高了识别准确率,还提高了系统的鲁棒性,实现了对目标的全方位识别探测。本文主要研究内容如下。(1)在复杂环境的复杂背景下,对通信
在组织病理学图像分析中,细胞核的分割对癌症的临床分析诊断有着重要的作用,将细胞核精确的分割出来可以为肿瘤分级奠定良好的基础。但是由于细胞存在不同的形态,染色的不均匀以及大量密集的核团的存在,精确的分割出细胞核仍具有挑战。近年来,深度学习已经广泛的被应用到病理图像细胞核分割中,因为它能够自动在图像数据中获取重要信息。为了更好的使深度学习神经网络在训练过程中能学习到更多具体的关键的特征信息,本文对国内
随着现代化的逐步推进,计算机、图形图像、硬件交互等技术已经成了生活学习中不可或缺的关键部分。虚拟现实技术作为一种新型的计算机技术,因其沉浸式和交互式等特性,正在潜移默化的改变我们的日常生活,也在各行各业产生了深远影响。在工业装配领域,传统装配方式需要消耗大量空间成本、时间成本、人力成本等,但是把虚拟现实技术与工业装配相结合,可以将真实的装配过程转变为在虚拟环境下的装配,解决传统装配技术带来的各个方
人体动作识别作为计算机视觉领域的关键技术之一,对现代社会的发展进步起到至关重要的作用。如何在不受复杂环境和目标个体差异的影响下提高机器识别人体动作的准确度,并使其快速准确的理解人所表达的动作信息是目前各大领域研究者们关注的重点。由微软发布的Kinect设备可采集三种不同类别的数据,其中深度数据和骨骼数据只取决于目标的空间位置,具有颜色无关性,动作识别受外界因素的干扰较小,为人体动作识别技术的研究提
随着科技的不断进步,相关电子元器件的制造产业取得了高速发展,自动检测电子元器件产品质量也成为了电子元器件生产的现实需要。在自动检测领域中,“检测精度”与“检测速度”是两个十分重要的检测的指标。本文根据工业生产环境中对检测精度和速度的不同需求,提出以下两种需求目标:(一)允许少量精度损失的情况下以高速度为目标;(二)以较高精度的电子元器件表面缺陷检测为目标。针对这两种需求目标,本文分别设计了两种基于