论文部分内容阅读
多载波技术已经成为当代通信技术发展的重要一环,它在提高通信系统传输速率、改善频带利用效率和抗多径干扰能力等方面发挥了重要的作用。在多载波调制技术中,正交频分复用技术(Orthogonal Frequency Division Multiplexing, OFDM)更是因其优越的数字化技术、良好的抗频率选择性衰落性能以及高信息传输速率,成为未来移动通信的主流技术,并已经成功地应用于无线本地环路(Wireless Local Loop,WLL)、数字音频广播(Digital Audio Broadcasting, DAB)、无线局域网(Wireless Local Area Network, WLAN)等系统中。另外,OFDM技术还易于结合空时编码、分集、干扰抑制以及智能天线等技术,最大程度地提高物理层信息传输的可靠性。虽然OFDM技术有很多优点,但它的一个最主要的瓶颈问题就是其高峰均功率比(Peak-to-Average Power Ratio, PAPR)问题。由于PAPR较高,使得信号经过非线性信道后,会出现严重的信号畸变,导致系统性能的衰退。同时,由于高峰值功率的存在,使得发送端对高功率放大器的线性度要求也相应提高,不但增加系统成本,还会导致低的功放效率。因此,本论文意在研究OFDM系统的峰均功率比特性,并结合其特性重点研究高PAPR的抑制方法和优化算法,达到有效控制OFDM系统峰值功率的目的。本文首先介绍了正交频分复用调制的基本原理和峰均功率比的定义,并给出PAPR的统计特性和度量方法,研究了与PAPR值有关的参量,并提出通过利用、控制和改善这些参量,可以达到对峰值功率控制的目的。同时论文列举了几种常用的峰值功率控制算法及其优、缺点,并着重研究了克服这些算法不足之处的优化处理算法。论文研究内容包括:改进的相位加扰算法、基于信道编码的峰值功率控制算法和改进的预畸变算法等。相位加扰算法是通过破坏子载波相位的一致性,使OFDM信号出现高PAPR的概率显著降低。但由于相位加扰算法的巨大计算复杂度,使得这种算法的应用受到限制。本文提出一种相位控制编码算法(Phase Control Coding,PCC),该算法可以明显降低传统相位加扰算法的计算复杂度。PCC算法是在传统部分传输序列(Partial Transmit Sequence, PTS)算法的基础上,通过将输入信号的数据部分进行2N→2l映射,再进行IFFT运算得到的。其余n-l个状态用来表示相位旋转因子索引,即相位控制码序列,经IFFT运算后再与数据符号相加。再在备选信号中选择PAPR最低的一路进行传输。另外,本文还提出了一种基于m序列映射的优化分割方案,通过理论证明,该种分割方法对功率峰值的改善性能仅次于随机分割方式,比交织分割和相邻分割方式性能优越。编码法是一种较新的无失真减小PAPR的方法,论文分析了Davis法构造Golay互补序列(Golay Complementary Sequences, GCS)的具体方法,及其能够有效抑制PAPR的理论依据。为提高Golay互补序列法的信息速率,本文研究了Golay码与编码调制相结合的改进GCS算法(Improved GCS, IGCS)原理和构造方法,并分析了结合编码调制时,OFDM系统的PAPR性能。虽然少量增加了系统的PAPR,但IGCS算法比GCS算法有更高的信息速率。当子载波数较大时,畸变法抑制PAPR是一种简单、易于实现的方法,但会产生限幅噪声和非线性失真。本文在Ochiai限幅滤波算法的基础上,提出一种基于MMSE准则的限幅失真重构迭代算法(Clipping Distortion Reconstruction Iteration, CDRI)。并利用LDPC信道编码技术、LLR-BP译码算法和MMSE迭代接收技术,实现对系统PAPR的有效抑制,同时有效减小系统的限幅噪声和非线性失真。最后,本文还研究了STFC-OFDM系统的载波干涉功率控制优化算法,通过理论分析和仿真证明,该算法在不同的分群方式下,具有不同的PAPR抑制能力,同时还会改善系统BER性能。