离子液体接枝改性二氧化钛的制备及其电流变性能研究

来源 :燕山大学 | 被引量 : 0次 | 上传用户:Play_pig
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
电流变液是由固液两相组成的悬浮液,其中固相颗粒在电流变效应中起着至关重要的作用。在外加电场作用下,电流变液中的颗粒会发生极化,随后颗粒之间因静电力而相互吸引,形成平行于电场方向的链柱状结构,且这一转变具有可逆性。具有低合成成本、高介电常数的二氧化钛(TiO2)在电流变液研究中受到了广泛的关注,然而未经修饰的TiO2往往表现出较差的电流变效应,采用简单有效的方法对TiO2进行修饰与改性以改善其电流变性能是TiO2基电流变材料研究的核心内容。不同于以往的物理吸附,本文采用共价键接枝的方法将不同结构的离子液体修饰在TiO2表面,探究了颗粒表面离子液体结构对其电流变性能的影响。研究了表面接枝离子液体含量对TiO2结构及其电流变性能的影响。选用1-乙烯基-3-丁基咪唑四氟硼酸盐([VBIm][BF4]),制备了三组不同[VBIm][BF4]接枝量的TiO2微球。对比分析了离子液体接枝前后颗粒的结构与形貌变化,TiO2接枝前后均为无定形态,且随着离子液体接枝量的增加,颗粒表面变得越来越粗糙;电流变测试结果表明,离子液体接枝TiO2电流变液的零场粘度明显增加;相同电场下,随着离子液体接枝量的增加,TiO2电流变液的剪切应力逐渐降低。制备了含极性基团的离子液体1-乙烯基-3-(2-氨基-2-氧乙基)-咪唑氯盐([VAFMIm]Cl)接枝的TiO2颗粒,研究了这一特殊结构离子液体对TiO2结构及电流变性能的影响。对比接枝前后TiO2的结构与形貌,颗粒表面未发生较明显的变化,且修饰前后颗粒均为无定形态。电流变测试结果表明,[VAFMIm]Cl接枝TiO2的零场粘度虽有增加,但相同电场下的屈服应力得到了明显的提高。研究了离子液体的不同阴离子结构(Cl-、N(CN)2-、NTf2-)对离子液体接枝TiO2结构及其电流变性能的影响。不同阴离子结构接枝TiO2后的形貌均无明显变化,且修饰前后颗粒均为无定形态;对比热分析结果,阴离子类型影响离子液体热稳定性,进而影响TiO2热稳定性;电流变测试结果表明,离子液体阴离子结构对TiO2的电流变性能有一定影响,阴离子结构为Cl-的电流变液性能较好,阴离子结构为NTf2-的电流变液性能较差。
其他文献
农业生产活动中畜禽粪便等有机肥频繁和大量施用导致重金属、抗生素和抗生素抗性基因(Antibiotic resistance gene,ARGs)的污染问题日益严重。腐殖酸(HA)是土壤中常见的有机类物质,能改善土壤环境,激活微生物活性以及促进植物生长,同时也是常用的土壤修复材料。因此,本研究选取镉(Cd)、磺胺嘧啶(SD)作为重金属和抗生素代表,选取HA作为添加剂,研究Cd和SD单一及复合污染以及
学位
黄河三角洲是典型的滨海盐碱区,石油污染严重。生物刺激、生物强化-刺激联合修复被广泛应用于国内外石油污染场地修复的研究中,目前主要集中于生物修复的影响因素及碳氢化合物的降解效率相关研究,对于实际场地修复过程中土壤微生物群落结构及功能随修复进程的变化研究较少。本文利用生物刺激(BS)、生物强化-刺激联合(BA)修复方式进行了黄河三角洲盐碱石油污染土壤的野外场地修复试验,试验周期为3个月。本研究的目的主
学位
马兜铃属植物中广泛存在着马兜铃酸(AAs),一种具有强致癌性的硝基菲羧酸,它会导致人类患慢性肾病,每年夺走数百万人生命。研究发现马兜铃属植物可以经过枯萎和腐烂,AAs进入土壤,造成了土壤污染。并且发现土壤中的马兜铃酸可通过植物的吸收作用在农作物中累积富集,从而危害人类健康。但目前对于土壤及生态系统中马兜铃酸污染状况,尤其是农作物中的迁移、转化,尚缺乏系统研究,使人们面临严重的饮食健康威胁。因此,本
学位
机械工业在我国国民经济中占据重要地位,机械装备制造水平代表着一个国家的科技发展水平。随着社会的快速发展,机械装备的可靠性指标也有了更高的要求,精准的可靠性分析方法是提高机械装备可靠性的关键。典型寿命分布往往不能很好地拟合复杂系统的可靠性变化,为此,将PH分布引入到T-S动态故障树模型中,提出PH分布下T-S动态故障树分析方法。进一步,针对可修系统提出PH分布可修系统T-S动态故障树分析方法,并基于
学位
钢铁材料制备过程中涉及到钢的冷却以及轧制或锻压前的再加热过程,在这些过程中温度的变化会导致钢中非金属夹杂物与钢基体之间的化学反应处于非平衡态。固体钢中稀土夹杂物与钢基体之间的反应,会造成钢中稀土夹杂物的种类、成分等性质的变化,从而对钢的性能造成影响。本研究通过控制钢中的稀土铈含量,在实验室通过高温硅钼电阻炉制备了含不同种类的含铈夹杂物的钢样。然后将钢样分别在不同温度下保温相同时间或者在相同温度下保
学位
高熵陶瓷源自于高熵合金,随后又扩展出多种类型,高熵氧化物陶瓷则是其中的一种。高熵氧化物陶瓷又称为熵稳定的氧化物,是一种新型的功能材料,自提出以来就引起了广泛的关注。最初的(Mg Co Ni Cu Zn)O系高熵氧化物陶瓷是单相岩盐结构,随后出现了萤石结构、钙钛矿结构和尖晶石结构的高熵氧化物陶瓷。不同的结构会给这类高熵氧化物陶瓷材料带来不同的性能,从而拓宽关于它的研究思路和应用前景。本文选择MgO、
学位
聚离子液体(PILs)兼具聚合物和离子液体的双重特性,其高电荷密度的阴/阳离子对在电场下可诱导出强偶极矩,被认为是一种优异的无水型电流变材料。然而含有机反离子的PILs的玻璃化转变温度(Tg)较低,当温度达到Tg时,其离子电导率迅速增加并产生漏电流,从而限制了PILs电流变液的使用。因此,解决PILs电流变液在高温下的离子泄漏是目前该材料研究的主要问题之一。本文以疏水型PILs微球为核,通过原位溶
学位
随着科技的发展和社会的进步,氯酚类污染物逐渐进入到人们的生活中,由于其具有三致作用、持久性强和生物蓄积性等特点,因此对氯酚类污染物的去除刻不容缓。因纳米零价铁具有比表面积大、颗粒粒径小、反应速率快等特点,近年来,在处理有机污染物方面被广泛关注,但因为其又有易团聚、易形成氧化层等问题,使得在实际应用方面具有不容忽视的局限性。同时,高级氧化技术因为可以产生具有强氧化能力的自由基而被人们所熟知,AOPs
学位
膜分离技术因其操作简单、效果显著且成本较低而广泛应用于含油废水等污水处理领域。聚偏氟乙烯(PVDF)微孔膜由于具备合适的孔径、较高的孔隙率、优异的化学稳定性以及较强的机械性能,一直以来被认为是废水处理领域较为有效的材料之一。但是PVDF膜片本身的强疏水性,使得其在使用过程中会受到严重的污染,极大的限制了其在污水处理领域的应用。因此,对PVDF膜片进行亲水化改性,提高其抗油污能力显得至关重要。本文分
学位
精准的合成方法决定着金纳米粒子的纯度,高纯度的纳米材料具有高效、稳定的性能。但相较于可以达到95%初始产率的金纳米球(Au NPs)、金纳米棒(Au NRs)等粒子,有着独特各向异性几何结构与优异等离子体性能的金纳米三角片(Au NTs)的产率却普遍低于50%,严重阻碍其在生物医疗、光谱分析等领域的进一步发展与应用。同时,特殊的手性结构粒子在作为传感平台进行手性分子检测与区分,调节生物机能反应等领
学位