论文部分内容阅读
铁磁性金属纳米颗粒薄膜系统中存在的巨磁电阻效应、巨霍尔效应、高矫顽力效应等新特性,使其在磁性传感器件、高密度记录介质、读出磁头和磁性随机存取存储器等研究领域具有广阔的应用前景。目前,具有面心四方结构的L10-FePt材料、半金属材料和铁磁性金属–半导体复合材料是凝聚态物理和材料科学领域的研究热点。本论文用磁控溅射法制备了软铁磁性金属-碳基(Fe-C, Co-C, FeN-CN)、硬铁磁性金属-碳基(FePt-C, FePtCu-C, FePtN-CN)、半金属-半导体基(Fe3O4-Ge)和铁磁性金属-半导体基(Fe-Ge)系列纳米颗粒薄膜,对它们的化学成份、微观结构、磁性质和输运特性进行了系统研究。通过对软铁磁性金属-碳基(Co, Fe, FeN)–C(N)颗粒薄膜的研究,发现在颗粒薄膜中,颗粒与母体间的相分离、颗粒尺寸和颗粒间的相互作用决定样品的磁性质和磁化机制。当相分离较好、颗粒间相互作用较小时,样品的矫顽力较大,并且磁化机制为单畴磁矩转动。反之,样品矫顽力较小,磁化机制为畴壁位移。用磁力显微镜直接观察到了Fe-C系统中的磁逾渗现象,为阐明颗粒间磁相互作用的变化提供了直接证据。在电子束辐照的Co-C颗粒薄膜中,观察到了Co颗粒对非晶C转变为石墨化的碳纳米结构(纳米线和纳米针)的催化作用。通过对硬铁磁性金属-碳基(FePt-C, FePtCu-C, FePtN-CN)颗粒薄膜的研究,发现适量的Cu掺杂可以促进L10-FePt合金的形成,而过量的Cu显著抑制L10-FePt相的形成。特别地,我们还发现N掺杂样品在退火过程中N的溢出和Fe-N键的断裂,可以促进L10相的形成,提高FePt合金的有序度;同时,高氮气分压可以有效控制FePt颗粒尺寸,有利于FePt颗粒薄膜在高密度磁记录介质方面的应用。通过对多晶Fe3O4薄膜、(Fe, Fe3O4)–Ge颗粒薄膜的研究,发现多晶Fe3O4薄膜的导电机制为隧穿导电。Fe3O4晶粒表面(界面)磁矩的取向对磁化强度贡献很小,但在高场下,晶粒表面(界面)磁矩的排列会导致磁电阻发生很大的变化,这就是Fe3O4薄膜材料中磁电阻随外加磁场呈现弱饱和现象的物理机制。在FexGe1–x颗粒薄膜中发现当x=0.5时,霍尔电阻率ρxy最大(126μ- cm),为纯Fe膜的139倍;在±10 kOe的磁场范围内,ρxy随磁场呈线性变化关系,并且在2–300 K温度范围内,直线斜率保持不变。这一特点使Fe-Ge颗粒薄膜在微电子学器件中的实际应用具有了可能性。