超细密球墨铸铁中α/γ相调控及其力学性能研究

来源 :西安理工大学 | 被引量 : 0次 | 上传用户:chenming88623
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文采用垂直提拉连续铸造技术制备出高球墨数(400个/mm2)且尺度、分布均匀的超细密球墨铸铁,采用等温淬火热处理及碳配分热处理调控其基体显微组织,通过不同热处理工艺参数对超细密球墨铸铁基体组织中α/γ相尺度、含量及其碳浓度分布进行调控,并探究了组织结构参数与力学性能的相关性规律及其摩擦磨损行为。主要结论如下:超细密球墨铸铁经等温淬火热处理后,其显微组织主要由球状石墨、α相以及γ相构成,并且其结构参数与热处理工艺密切相关。随着奥氏体化温度的升高,超细密球墨铸铁基体组织中γ相含量及其碳含量明显增大,且其尺度显著粗化;α相形态变长变细,倾向于形成细长针状。随着等温淬火温度的升高,超细密球墨铸铁基体组织中γ相含量及其碳含量增加,α相形态变长变粗,倾向于形成粗长板条状。力学性能表征发现,奥氏体化温度在850℃-950℃,材料塑韧性随着γ相含量增大而提高。但当奥氏体化温度高于950℃,继续增大奥氏体化温度会引起γ相尺度长大,显著恶化力学性能。另一方面,随着等温淬火温度升高,γ相含量不断增多,导致材料强度降低、塑韧性提高。摩擦磨损实验表明,超细密球墨铸铁“冶金镶嵌”的石墨在摩擦应力的作用下可形成石墨润滑层,降低材料摩擦系数,其摩擦系数远低于GCr15。在低载低速下,超细密球墨铸铁硬度越低,石墨润滑层越易形成,因此其摩擦系数随着等温淬火温度的升高而降低。进一步提高载荷和转速会引起摩擦表面升温,造成摩擦层氧化脱落,进而改变磨损机理。随着载荷和转速的提高,超细密球墨铸铁其磨损机理依次为剥层磨损、轻微氧化磨损、严重氧化磨损。碳配分热处理可以促进等温淬火态试样中α相碳原子进一步向γ相扩散,从而使α相中的碳含量降低,这种组织在不降低等温淬火态超细密球墨铸铁强度的情况下,显著提高其塑韧性。经碳配分处理后,等温淬火态试样延伸率提高了约50%。
其他文献
错齿BTA深孔钻振动钻削技术以其断屑可靠、排屑顺畅、钻削力小、加工精度高和刀具寿命长等优势,在深孔加工领域得到了广泛应用。然而由于深孔振动钻削机理的复杂性以及加工条件的多样性,实际加工过程中刀具系统受到各种复杂环境的影响,导致刀具中心的运动轨迹极其复杂,进而对孔的加工质量造成影响。因此如何准确的控制切屑和钻削力的大小以及预测刀具系统的径向振动等已成为深孔振动钻削加工中的热点和关键问题。本文以第三代
以高速干切削为代表的绿色加工制造业快速发展,迫切需要提高刀具涂层的宽温域使役性能,相较于作为刀具涂层而被广泛使用的传统金属氮化物涂层,多主元氮化物涂层具有更为优异的室温力学性能及良好的高温稳定性,有望作为刀具保护涂层进一步提高刀具的宽温域使用性能。但目前有关多主元氮化物涂层高温摩擦学性能研究鲜有报道,针对于此,本文通过多靶顺序沉积的方式,通过改变氮气流量和基体偏压制备了(TiAlCrMoW)Nx多
随着航天、航空及汽车领域高端装备的发展,以及对轻量化构件的需求,具有高承载,高精度和高可靠性的带内齿形复杂筒形件被广泛的应用于关键部件上。此类构件通常其形状复杂,齿形数多、尺寸精密,属于难成形结构,采用传统的工艺成形,存在材料利用率低、加工效率低、尺寸精度差等缺点,旋压成形技术作为局部连续加载的板体成形工艺。则为此类构件的成形制造提供了新的途径。然而,由于其整体结构形状复杂,旋压成形过程中容易出现
空气压缩机目前应用非常广泛,而缸体是空气压缩机的关键零件,铝合金由于质量轻、比强度高、易于加工成型已经全面取代了铸铁成为制造缸体的原料;然而使用过程中暴露出很多缺陷与不足,铝合金由于表面硬度低、耐磨性能较差急需改善。通过表面处理的方法可以改善铝合金的表面性能,拓宽铝合金的应用范围。本文以缸体用6061铝合金为基体材料,对其进行微弧氧化处理,研究了溶液成分和正负电流密度对微弧氧化陶瓷层表面粗糙度、微
TA2-Q345复合板同时具备了钛的耐腐蚀性和钢的高强度,所以TA2-Q345复合板在压力容器中的用量逐年增加。压力容器都是在高温、高压甚至腐蚀性介质的环境中工作,但在制造过程中所产生的焊接残余应力会直接影响压力容器在高温、高压以及腐蚀性介质中的工作寿命。因此本文基于热弹塑性理论,利用ANSYS有限元软件模拟研究TA2-Q345复合板在不同焊接工艺下焊接的温度场和应力场,获得TA2-Q345复合板
3D打印钛合金内流道零件已经越来越凸显出设计制造和结构性能方面的优势,但内流道表面抛光问题依然严峻。化学抛光装置简单,效率高成本低,但抛光后金属表面易产生腐蚀且不能显著改善粗糙度。微磨料浆体射流抛光是一种潜在的复杂内流道抛光方法,物理磨抛力量强,但国际国内较少有系统的研究和科学报道。本文首先对化学和微磨料浆体射流抛光进行独立研究,揭示两种抛光方式的优缺点,结合两种方法各自的特点创新提出针对3D打印
高硅铝合金具有轻质高强、高耐磨、高导热及低热膨胀系数等优异性能,与铝合金缸体和活塞的相容性好,查阅文献资料有喷射沉积技术制备高硅铝合金缸套的相关报导,但由于其工艺流程非常复杂,且生产效率低下,制备成本较高。基于高硅铝合金作为表面耐磨层的开发,本文采用内孔超音速等离子喷涂高硅铝涂层对缸体内壁实现耐磨强化,以替代缸套的作用,实现发动机的轻量化。本文首先对内孔超音速等离子喷涂的工艺参数进行优化,探索总气
钨及其合金具有熔点高、密度大、高温强度好、弹性模量高、热膨胀系数小等优点,在航空航天、军事、核工业等领域有着广泛的应用,被誉为工业的“牙齿”。然而,在某些实际应用中,钨及其合金的性能或寿命受到表面硬度低、耐磨性差限制,在表面制备硬质防护是解决这一问题的有效途径。本工作利用间隙原子渗碳法在钨表面制备了 WC硬质层。选择高碳钢作为提供间隙碳原子的碳源,间隙碳原子扩散到钨基体中,形成碳化物硬质层。针对W
微弧氧化过程中等离子体放电对金属基体应力的影响是降低金属基体疲劳性能的本质原因,但等离子体放电的累积能量和最大弧光微区能量是由电源负载特性控制的。基于此,本文研究了不同电源负载特性下陶瓷层生长时弧光放电的累积热效应及最大弧光微区能量,采用升降法研究对应试样的疲劳性能,结合微弧氧化处理后镁基体平均残余拉应力值的改变及分布状态,探讨了不同电源负载特性下等离子体放电对镁合金微弧氧化试样疲劳性能的作用机制
随着汽车工业的飞速发展、机动车数量的持续上升、技术进步和机器的不断更新,工业上对发动机的性能要求越来越高。因此对发动机关键零部件轴瓦的性能要求也越来越高,研究者一直致力于轴瓦材料的改性和新型轴瓦材料的研究,来解决轴瓦性能和发动机高速、高载荷发展之间的矛盾。本文对Cu基轴瓦上热浸镀Pb-Sn合金工艺及其镀层的摩擦磨损性能进行研究,为实现热浸镀在轴瓦材料上的应用具有积极作用。首先在Cu基体上热浸镀Pb