【摘 要】
:
随着现代生活和工业生产过程对能源供给和环境保护的要求不断提高,迫使人们寻找开发新型清洁、可再生能源。众所周知,太阳能是目前最清洁环保的可再生能源,开发高效、安全的能量储存转换装置将太阳能充分利用是众多科学家研究的方向。本论文围绕用于光催化燃料电池(PFC)以及光辅助铁-空气电池中的光电极展开一系列工作。通过设计不同的高催化活性半导体光电极,将太阳能充分利用在燃料电池以及铁-空气电池领域,实现太阳能
论文部分内容阅读
随着现代生活和工业生产过程对能源供给和环境保护的要求不断提高,迫使人们寻找开发新型清洁、可再生能源。众所周知,太阳能是目前最清洁环保的可再生能源,开发高效、安全的能量储存转换装置将太阳能充分利用是众多科学家研究的方向。本论文围绕用于光催化燃料电池(PFC)以及光辅助铁-空气电池中的光电极展开一系列工作。通过设计不同的高催化活性半导体光电极,将太阳能充分利用在燃料电池以及铁-空气电池领域,实现太阳能与电能的高效协同转化。本文主要工作如下:1.以FTO导电玻璃为基底,制备了三维多孔结构的BiVO_4光电
其他文献
随着电力电子器件的不断进步,模块化多电平换流器(Modular Multilevel Converter,MMC)以容易级联、输出特性良好等诸多优点在柔性直流输电领域受到广泛关注。本文工作主要围绕MMC的拓扑及原理、系统级非线性控制策略、调制策略和环流抑制四方面展开,具体如下:(1)建立MMC在三相abc静止坐标系下和dq同步旋转坐标系下的模型,分析MMC系统的基本工作原理。(2)结合MMC在柔性
随着能源和信息时代对电池新材料需求的增加,中国电池新材料市场将不断扩大。镍钴锰三元正极材料结合了钴酸锂、镍酸锂及锰酸锂三类材料的优点,具有容量高、振实密度较大、能量密度大等优点,是很有发展潜力的一种正极材料。主要采用共沉淀法制备锂镍钴锰正极材料通常将镍、钴、锰三种元素共同沉淀,所得前驱体与锂化合物混合,煅烧后得到锂镍钴锰正极材料。但是,该方法存在晶化时间过长、反应釜内温度及浓度分布不均匀等问题,其
近些年来,得益于我国的经济和社会的不断发展,电力行业也得到了蓬勃发展,值得骄傲的是现在中国的电力行业也是远远领先全世界的一个伟大行业,这是机遇但同样也是挑战。当前,我国大规模发电机群朝着送端单机容量增大、电网强互联、受端电网密度大的趋势发展,导致输电线路和受端系统等值阻抗减小而送端系统等值阻抗增大。在如此电力系统发展背景下,振荡中心可能发生迁移,严重时将迁移进入送端系统机群内部。根据其定义可知,当
超级电容器作为一种介于电池和传统电容器之间的新型电化学储能器件,因其循环寿命长,充放电时间短,功率和能量密度高以及环境友好等优点,在航空航天、能源化工、电子设备等应用领域中受到广泛关注。其性能在很大程度上取决于电极材料、所用电解质的性质以及所采用的电压窗口范围。二氧化钌因其理论比电容高(1400-2000 F/g)而被普遍认为是最佳的超级电容器材料,但高生产成本和团聚效应阻碍了其市场化的应用。因此
锂离子电池(LIBs)因具有高能量密度、长循环寿命迅速占领了便携式电子设备等电源的市场。然而,当应用于电动汽车的电源(EVs)、能量储存(如:光伏电站或风力涡轮机)等存储能力极大提高的设备上时,LIBs依然不能满足现今的需求。商业LIBs负极普遍应用石墨材料,其理论比容量只有372 m Ah·g~(-1),实际比容量已达到365 m Ah·g~(-1),没有大幅度的提升空间。因此提高负极的比容量就
伴随经济发展与科技发展的需要,致使对能量的需求日益增大。其中,化石能源仍然占据着供给能源的主导地位,对社会发展依旧产生着巨大的推动作用。然而,由于化石能源的开采量持续增大,使全球化石能源的储量不断下降,因此研究者们迫切地需要寻找可代替的再生能源来缓解未来将会发生的能源危机,其中太阳能由于可再生及总量大等优势,逐渐进入研究者们的视线。通过光合作用的方式直接获取能量是解决能源危机的有前景并且有效可行的
目前,我国火电实际发电量超60%,仍是保障我国电力安全和电力供应的主力。但是,60万以下超临界及亚临界机组占比55%以上,这些小机组容量小、参数低、煤耗高,严重影响火电行业整体碳排放。因此,发展大容量、高参数、低能耗的超超临界电站是煤炭清洁高效利用重要途径之一,将有力支撑国家节能减排、碳达峰碳中和国家战略。G115钢是我国自主研发的新型马氏体耐热钢,是国家630℃超超临界二次再热国家电力示范项目锅
当前化石资源正在日益枯竭,环境日益恶化,面对此情况,人们开始重视起清洁、环保、可再生的新能源,其中太阳能是一种无穷无尽且分布范围较广,可再生的能源。硅太阳能电池是将太阳能转变为电能的关键装置,其中正银浆料是太阳能电池的关键部分,而玻璃粉又在银浆中扮演着重要的角色。当前世界各国都对导电浆料做出了相关规定,其中最重要的就是限制铅含量。因此,研究出高性能且环保的无铅导电银浆对于全球的能源短缺和环境污染有
表面增强拉曼光谱(Surface Enhanced Raman Spectroscopy,SERS)自发现以来,凭借其高灵敏度、高准确性和复杂体系中的痕量物质检测,在生物样本分析、化学分析、食品检测和环保监控等领域得到了广泛应用。目前对于SERS的研究只集中在增强的机理,不同尺寸和形貌的基底的构建,以及SERS的应用。本论文通过微乳液法进行表面性质可控的SERS基底的构建,基于SERS基底的亲疏水