论文部分内容阅读
微机电系统(MEMS)已被广泛应用于现代科技和工程的诸多领域。其中谐振器是MEMS的核心部件。MEMS谐振器的能量耗散分为外部耗散和内部耗散两种形式。当系统运行的外部环境非常完美时,影响谐振器品质的最主要的耗能机制是其自身内部的热弹性阻尼。因此,谐振器的热弹性阻尼研究对于高品质MEMS的研制是至关重要的。到目前为止,对热弹性阻尼的研究多是针对均匀材料和层合复合材料,而鲜见关于材料性质连续变化的非均匀材料微梁板谐振器的热弹性阻尼的研究。为此,我们选取功能梯度材料微梁为研究对象,采用解析方法定量分析微梁在自由振动过程中的热弹性阻尼,揭示非均匀材料谐振器的热弹性耦合耗能机理。研究工作主要包括: 1.基于Euler-Bernoulli梁理论和单向耦合的热传导理论,假设矩形截面微梁的材料性质沿着梁高度按幂函数连续变化,忽略温度梯度在轴向的变化,建立了功能梯度微梁横向自由振动和热传导控制微分方程。其中的热传导方程为单向热弹耦合的变系数的二阶非齐次偏微分方程。消去轴向位移,获得了只用挠度表示的横向自由振动微分方程,其中包含了与升温场有关的热轴力和热弯矩。 2.分别针对忽略或考虑热轴力两种不同情形,采用分层均匀化方法将功能梯度材料微梁沿厚度划分为有限层,并将每层材料性质看作均匀的,从而变系数的热传导方程被简化为一系列在各分层定义的常系数微分方程。利用上下表面的绝热边界条件和各层间的连续性条件求解上述常系数微分方程获得了功能梯度材料微梁温度场的分层解析解。将温度场代入振动微分方程,求得了包含热弹性阻尼的复频率,进而获得了代表热弹性阻尼的逆品质因子。 3.给定金属-陶瓷功能梯度材料微梁的具体物理和几何参数,计算得到了热弹性阻尼的数值结果。详细分析了材料梯度性质变化、几何尺寸、振动模态阶数及边界条件对热弹性阻尼的影响。结果表明:(1)若梁长固定不变,梁厚度小于某个数值时,改变陶瓷材料体积分数可以使得热弹性阻尼取得最小值;(2)振动模态阶数对热弹性阻尼的最大值没有影响,但是振动模态阶数越大对应的临界厚度(热弹性阻尼最大值对应的厚度)越小;(3)不同的边界条件对应的热弹性阻尼的最大值相同,但是随着支座约束刚度的增大对应的临界厚度减小;(4)热弹性阻尼的最大值和对应的临界厚度随着金属组分的增加而增加。