论文部分内容阅读
本文研究了 Abbas Salemi在2011年(Banach J.Math.Anal.)提出的一个猜想,即对于可分的无穷维Hilbert空间上任意有界线性算子A,都存在一个可估计的分解,使得σ(A)=∩n=1∞(?).通过研究可分的无穷维Hilbert空间上有界线性算子的n次数值域,我们部分地解决了这个问题.但是在研究Salemi猜想的过程中,发现对于一般的有界线性算子,可估计的分解的存在性是很难验证的,并且谱的数值逼近可能也不精准,尤其当算子不是自伴或正规的时候.为了更好地理解n次数值域和进一步解决Salemi猜想,进而获得谱的相关信息,我们考虑如何利用投影法计算分块算子矩阵的n次数值域,并将问题简化为计算(有限)分块矩阵的情形.首先,解决了 Salemi猜想关于对角算子,正规算子,具有完全不连通谱的亚正规算子,几类特殊的亚正规算子,具有完全不连通谱的半正规算子和一类半正规算子的情形,给出了它们的可估计的分解.其次,进一步解决了 Salemi猜想关于幂零算子和一类谱算子的情形,并在范数极限意义下,给出了拟幂零算子的可估计的分解.在拟幂零等价意义下解决了 Salemi猜想关于谱算子的情形.最后,利用投影法数值逼近有界和无界分块算子矩阵的n次数值域.当分块算子矩阵为无界的情形,我们假定它是主对角占优或次对角占优.作为简单例子,近似计算了一个具体的无穷维Hamilton算子矩阵的四次数值域.