【摘 要】
:
随着计算机视觉技术的发展和人们生活水平的提升,高分辨率、宽视角的图像越来越受大众重视和追求。图像拼接可通过软件实现这一需求,为人们提供了经济有效的技术手段。目前,图像拼接技术在视频监控、无人机飞行、VR、森林防火、深海探索等领域被广泛应用。特别是在视频监控领域,在监控界面和人员精力有限的情况下,图像拼接技术直接有效地扩充了监控区域,增强了环境监控能力。传统图像拼接算法运行较为耗时,选取的特征点较为
论文部分内容阅读
随着计算机视觉技术的发展和人们生活水平的提升,高分辨率、宽视角的图像越来越受大众重视和追求。图像拼接可通过软件实现这一需求,为人们提供了经济有效的技术手段。目前,图像拼接技术在视频监控、无人机飞行、VR、森林防火、深海探索等领域被广泛应用。特别是在视频监控领域,在监控界面和人员精力有限的情况下,图像拼接技术直接有效地扩充了监控区域,增强了环境监控能力。传统图像拼接算法运行较为耗时,选取的特征点较为密集、匹配准确率低,无法满足网络视频图像拼接需求,且市面上带有图像拼接功能的摄像头大多价格昂贵或需要特殊硬件支持。因此,本论文在研究传统图像拼接算法的基础上,致力于提高图像拼接的准确性和实时性,并将其应用于网络视频监控平台,主要研究工作如下:(1)在特征提取方面,实现均匀化ORB(oriented FAST and rotated BRIEF)特征点,将改进后的算法与差异性更强的局部差异二值(LDB)描述子结合,增强描述子独特性。首先,通过金字塔网格划分、动态阈值和四叉树特征筛选等策略,在实现均匀提取特征点的同时保证特征点的有效性。其次,LDB描述子算法对特征点及其邻域采用网格的形式得到灰度和梯度信息,再通过比较网格间的灰度和梯度信息提取出特征点描述子;该描述子算法在提升辨别能力的同时,继承了二进制描述子运行速度快和低存储的特点。改进后的ORB算法具有均匀性、准确性、实时性,能够应用在图像拼接中。(2)在图像拼接方面,针对运动目标引起的拼接重影问题,采用三帧差法检测运动目标,更新拼接参数并重新计算图像拼接融合线,消除重影。针对图像拼接较为耗时的问题,提出通过减少提取特征点面积和周期性更新图像拼接参数两种方式实现实时的图像拼接。为了提高实时性,首先,确定重叠区域,仅对重叠区域提取特征点,减少数据处理量;其次,提前计算拼接参数,并减少参数更新频率。降低图像拼接耗时的同时保证拼接准确度。(3)实现网络摄像头的图像拼接监控系统,包含网络摄像头通信协议、RTSP视频流获取及解码、图像拼接和监控客户端等。网络摄像头通信协议采用标准ONVIF协议,对摄像头设备搜索、设备能力获取、RTSP地址获取、云台控制、图像分辨率设置等功能进行了实现,采用FFmpeg、OPENCV来获取和处理图像数据。通过监控客户端整合各个资源实现了图像拼接的网络视频监控系统,提升了使用监控系统的便利性,扩充了监控系统方案。
其他文献
传统的视觉同时定位与建图(Simultaneous Localization and Mapping,SLAM)无法完成与环境之间的交互任务,而且当环境中存在动态物体时,系统的定位精度会大幅下降,融合了语义信息的SLAM系统能够较好地解决上述问题。获取周围环境中的语义信息是语义SLAM的重要任务,然而,采用语义分割或实例分割网络会影响系统的时间性能,采用目标检测方法又会损失一部分精度。因此,本文提
对话问题生成旨在根据给定长文本和对话历史生成对话式问题。在日常生活中,对话式问答更为常见,人们之间进行连续问答来传递信息。对话问题生成可广泛应用于教育、医疗和商业服务等领域,具有较大的应用前景。目前研究对话问题生成的主流方法是基于深度学习技术设计神经网络模型,然而模型生成的对话问题距离应用仍有很大的差距。本文主要基于序列到序列模型和预训练模型来分析如何提升对话问题生成的性能,本文主要的工作如下:(
随着无线通信技术和先进传感器制造技术的发展,车载自组织网络(Vehicular Ad hoc Networks,VANETs)中的V2V通信越来越受到业界和学术界的关注。这种以高速移动的车辆为通信节点的无线通信机制受到信道资源有限和网络拓扑结构不稳定的限制。为有效提高网络性能和通信的稳定,本文首先在对车辆进行分簇的前提下,通过合理控制车辆在高节点密度环境下的通信发射功率,提出一种基于串行干扰消除(
小样本语义分割的目的是在仅有少量带标注的训练数据可用的情景下训练模型,让模型学习到具有通用性的分割能力,从而在新类上也能保持较好的分割效果。现有的小样本语义分割模型往往使用单一原型描述整个类别,然而由于样本量匮乏和类内变化的存在,生成的单一原型往往不具有代表性,存在语义模糊的问题。此外现有方法使用全局平均池化提取类别原型,忽略了对于背景信息的使用,然而前景和背景特征之间往往存在语义关联。针对以上问
在互联网技术高速发展的当代,各行业领域在日常的生产生活中都产生了海量数据,而能够有效挖掘数据信息且进行形式化表达的因果关系发现问题已成为当前学术界的研究热点之一。因果发现被广泛应用于生物医疗、故障检测和自然语言理解等领域。然而,目前的因果发现算法不能有效地处理服从非线性非高斯分布的连续数据集,大多存在精度一般、计算方式复杂及时间成本高等不足。为此,本文主要研究了加性噪声模型下基于相关系数的因果结构
小样本学习旨在训练一个具有良好泛化性能的模型,在样本数量极少时仍具有良好的分类效果。小样本学习方法主要包括数据增强、元学习、多模态融合以及度量学习四类方法。大多数度量学习的模型仅仅关注图像实例级别或者类级别的特征,却忽视了图像的局部细节特征。近年来,许多基于局部描述子的度量网络充分考虑了图片像素级别的局部细节特征,但仍然存在着局部描述子之间缺乏关联性以及分类器易受局部噪声干扰的问题,因此本文对基于
铁路道岔是一种使机车从一股道转入另一股道的线路连接设备,列车行驶中出现的挤岔、脱轨事故多由驾驶员对道岔状态的错误判断引起。因此利用计算机视觉实现道岔场景的准确识别对列车无人行驶和铁路运输智能化发展具有重要意义。传统的铁路道岔分类算法受制于铁路环境复杂等原因,在分类速度和准确度方面不尽人意;而基于深度学习的铁路道岔分类模型一般在高能见度条件下进行大量数据标注和训练,虽克服了人工特征提取的弊端,但是在
随着深度学习和计算机视觉的高速发展,人们越来越需要深入理解图像。人-物交互检测是计算机视觉领域继目标检测、场景分割和目标追踪后的又一基础任务,该项任务的目标是定位并且推理图像中人与其周围物体的交互关系,对理解人类行为至关重要。人-物交互检测的难点主要在于机器无法知道人具体和哪些物体存在交互关系,现有方法常常对大量非交互对也进行了推理。此外,现有方法常常受到训练样本长尾分布的影响而损失检测效果。针对
随着人们生活水平的提高,能源需求消耗急剧增长。准确的能源消耗预测可以帮助相关部门制定合理的能源生产计划,积极响应节能减排、可持续发展的理念。能源消耗数据包含复杂的时间关系和特征关系,传统的预测方法如自回归模型和高斯过程很难捕捉到这些关系。深度学习兴起后,循环神经网络(Recurrent Neural Network,RNN)广泛用于能源消耗预测的研究。但是,当能源消耗数据的序列足够长时,RNN会出
三角网格是计算机图形学中用于为各种不规则物体建立模型的一种数据结构。通过如扫描仪等辅助设备扫描或图像生成的三角网格模型存在不同程度的噪声问题。噪声去除是研究和处理三角网格模型的重要前序工作,带有噪声的模型会对研究产生数据上的计算误差。目前网格去噪的主要手段是通过对三角网格面片法向量进行修正进而调整网格位置而完成噪声的去除工作。近几十年,三角网格去噪技术进一步发展,对于扫描和图像生成模型的处理工作有