论文部分内容阅读
水稻是全球最重要的粮食作物之一。水稻遗传改良的关键是寻找能调节水稻株高、分蘖数、抽穗期、穗的大小和育性等重要农艺性状的基因。以MicmRNA为代表的内源small RNA分子是生物生长发育关键调节因子,为水稻的遗传改良提供了新的基因资源。本研究包含三方面的内容:一是构建水稻全长cDNA文库,得到13000个以上的全长cDNA克隆,同时构建用于酵母双杂交筛选的cDNA文库;二是系统的分析水稻中的OsSPL(Oryza Sativa SQUAMOSA Promoter-binding Like)基因,特别是miR156的靶基因;三是以筛选控制水稻重要农艺性状的small RNA基因为目标,重点研究miR156和miR164在水稻生长发育中的调节机制。cDNA文库的构建的结果如下:1.利用改良的Oligo-capping方法构建了全长比例在92%以上的水稻幼穗的cDNA文库,并对3000个随机挑选的克隆测序。此外,从本实验室已有的cDNA文库中筛选了10828个包含完整读码框的cDNA克隆。总共得到了13650个全长cDNA克隆。2.构建了两个用于酵母双杂交的cDNA文库,在本实验室已成功用于转录因子、mRNA剪切因子、未知基因等不同类型基因的互作蛋白的筛选,假阳性率在10%以下。miR156及靶基因OsSPL基因分离鉴定的主要结果如下:1.分析了水稻中miR156的靶基因OsSPL家族。主要包括水稻中18个OsSPL基因的分离、植物中SPL基因的进化分析、保守结构域的分析,并分析了OsSPL基因在水稻的13不同发育时期的组织中的表达水平。对8个OsSPL基因进行了超表达。2.序列分析表明水稻中11个OsSPL基因含miR156的结合位点(M156BR,miR156 binding region)。通过Northern blot的结果表明,OsSPL12和OsSPL14的mRNA分子被miR156-RISC切断。3.RLM-RACE分析OsSPL14和OsSPL17被miR156-RISC切断的位置。miR156-RISC在M156BR的第7和8个核酸之间的位置切断靶基因,正好位于M156BR与miR156错配的核酸的位置。4.对miR156的一个靶基因OsSPL14进行了定点诱变,得到不受miR156调节的基因OsSPL14ml和OsSPL14m2,并对OsSPL14m2进行了超表达。5.通过Y2H筛选穗的cDNA文库,得到了OsSPL14的6个互作蛋白。其中三个是与ubiquitin途径相关的RING finger类蛋白,表明OsSPL14除了受miR156调节外,蛋白的稳定性可能还受ubiquitin途径的调节。miR156和miR164功能研究主要结果如下:1.在玉米Ubiquitin启动子的作用下超表达了miR156和miR164,得到了miR156的两个前体(pri-miR156b和pri-miR156h)的超表达植株(Md和Mh)和miR164一个前体(pri-miR164b)的超表达植株(MI7)。2.分析了Md和Mh的T4代植株与WT(wild type)在生长和发育上的差异。在苗期(四叶期以前)Md和Mh与WT无差异。在第四叶生长出以后,Md和Mh的叶片和分蘖发生的速度是WT的3倍以上。到灌浆期,Md和Mh植株叶片的数目是WT的100倍以上,有效分蘖的数目是WT的50倍以上。在大田种植条件下(武汉7月至10月)Md和Mh的营养生长延长,抽穗期推迟7天以上。Md和Mh植株高度只有WT的50%,穗的二次枝梗和颖花数变少。通过比较Md和Mh的叶片大小、叶片表皮细胞的发育情况和SAM(shoot apical meristem)的大小,推断miR156超表达改变了水稻的发育时间。3.通过small RNA gel blot分析miR156在不同“年龄”的叶片中的表达水平表明miR156的高低与叶片发育时间正相关,miR156是叶片发育时间的Marker基因。4.利用水稻的全基因组芯片分析了Md/Mh和WT植株的老叶和新叶中基因的表达情况,并据此分析miR156的下游基因以及叶片发育时间相关的基因。5.比较了含M156BR的OsSPL基因在Md/Mh和WT不同器官中的表达量,结果表明miR156-OsSPL基因的互作受其他因子的调节,可能的调节因子有DRG12和已报道的PLA2。6.在叶片的生长发育过程中miR164表达模式与miR156正好相反,说明两者在叶片的发育过程中存在联系。同时在small RNA gel blot中还检测到一个表达模式与成熟miR164相反的未知前体,表明miR164的水平受启动子和microRNA形成过程的双重调节。7.序列分析表明水稻中仅有OsNAC1和OsNAC2含M164BR(miR164 bindregion)。RLM-RACE分析也证明OsNAC1和OsNAC2的mRNA在M164BR第10个核酸的位置被切断。OsNAC1和OsNAC2的转录本在不同发育时间的叶片中,表达模式与miR164的表达模式相反。8.miR164能调节水稻叶片的边界。在miR164超表达的MI7植株中,叶鞘边缘融合、部分叶片融合或扭曲,在一些极端的植株中有类似拟南芥cup-shaped的结构形成。MI7叶片发育的缺陷随植株生长时间的增加而加剧。9.miR164调节水稻的生殖生长。MI7的花药形态发育异常,花粉完全不育。MI7虽能正常开花,但胚和胚乳不能正常发育。正常抽穗开花的MI7主分蘖的倒数第二个节(穗颈节的前一个节)未伸长。MI7的叶片中,一个Flowers Locus T(FT)的同源基因(MI7D1)被抑制。在长日照条件下,OsNAC1、OsNAC2和MI7D1的表达与日照有关,OsNAC1和OsNAC2表达的最高峰在黑暗时间段的正中点。10.miR164的超表达改变了水稻体内的激素水平。通过外施生长素和细胞分裂素可以使MI7生长发育恢复正常。在MI7植株中部分生长素合成、运输和应答的基因被抑制。11.通过比较不同植物中miR156和miR164的表达,发现miR156-miR164在禾本科作物中保守,但在油菜叶片中存在不同的表达模式。12.根据以上结果,可以推断出以下结论:miR156是控制水稻发育特别是叶片发育的异时性基因。miR164在水稻中除了调节器官边界外,还具有与拟南芥中不同的功能—调节水稻的生殖生长。最后,一个miR164-miR156Paradigm的模型用来解释miR156和miR164在协同调节水稻器官发生、生长和成熟过程中的作用。MicroRNA表达模式的改变和靶基因数目的变化是miR156-miR164进化的重要组成部分。