【摘 要】
:
本文利用量子电动理论计算了发光原子分别处在单界面平行介质板和双界面平行介质板中原子自发辐射的特性,并首次将已成功应用于原子分子物理学中的电子闭合轨道理论用来研究光子的行为。闭合轨道理论对原子自发辐射速率给出了一种更加简明合理的解释。 对于单界面情况,我们研究了随发光原子远离界面时,原子自发辐射速率的变化情况。计算结果表明:随着发光原子远离界面,原子自发辐射速率呈现衰减的单周期振荡现象。我们利
论文部分内容阅读
本文利用量子电动理论计算了发光原子分别处在单界面平行介质板和双界面平行介质板中原子自发辐射的特性,并首次将已成功应用于原子分子物理学中的电子闭合轨道理论用来研究光子的行为。闭合轨道理论对原子自发辐射速率给出了一种更加简明合理的解释。 对于单界面情况,我们研究了随发光原子远离界面时,原子自发辐射速率的变化情况。计算结果表明:随着发光原子远离界面,原子自发辐射速率呈现衰减的单周期振荡现象。我们利用闭合轨道理论给出,在单界面情况下只有一种类型的闭合轨道,该闭合轨道正确地给出了原子自发辐射速率单周期振荡的频率。闭合轨道理论成功地给出了一种对原子自发辐射现象新的理解方式,这是闭合轨道理论在光学领域中一次成功的尝试。 对于双界面包括对称和非对称结构情况,当保持发光原子与上下界面的距离之比不变时,我们研究了随着介质板厚度的增加,原子自发辐射速率的变化情况。计算结果表明:随着介质板厚度的增加,当保持发光原子与上下界面的距离之比不变时,原子自发辐射速率呈现衰减的多周期振荡现象。我们利用闭合轨道理论给出,在双界面情况下有多种类型的闭合轨道,这些闭合轨道分别给出了原子自发辐射速率多周期振荡的各种振荡频率。我们将闭合轨道理论中的轨道概念和原子自发辐射速率多周期振荡的频率结合起来,对原子自发辐射速率的振荡现象给出了一种简明合理的解释。
其他文献
为实现低成本且高效的海水淡化,通过水热反应和化学气相沉积在泡沫镍(NF)上构筑层次化结构,原位生长了海胆状磷化镍钴(SU-NiCoP)和纳米花状磷化镍钴(FL-NiCoP),制备了多级结构材料。利用场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)、能谱分析(EDS)、X射线衍射仪(XRD)、X射线光电子能谱(XPS)、紫外-可见-近红外吸收光谱(UV-vis-NIR)和红外热成像(I
本文基于计算直觉并结合文献[9],[12]中的若干思想,提出了偏序逼近族的概念,在偏序集的范畴中构造了由偏序逼近族所产生的逆系及其弱逆极限,其中弱逆极限是逆系(余定向系)的逆极限(余极限)概念的序化版本,而所构造的弱逆极限则是偏序集链完备化的一种推广。
本文研究次线性Liénard方程和具有奇异性Duffing方程周期解的存在性。 在第二章中,本文考虑了二阶Liénard方程x″+f(x)x′+g(x)=e(t),这里,f,g,e:R→R是连续函数,e(t)是以2π为周期的周期函数。设当x趋于正无穷时,F(x)(=integral from n=0 to x f(s)ds)是次线性的,g(x)也是次线性的,同时g(x)满足符号条件,并且存在
本文考虑具有奇异性的Duffing方程x″+g(x)=p(t)周期解的存在性与多解性,这里g:R+→R是局部利普希茨连续函数且在原点有奇异性,p(t)是连续的2π-周期函数。 本文第一部分讨论具有奇异性的Duffing方程x″+g(x)=p(t)周期解的存在性与多解性。在时间映射具有振动性时,通过用相平面分析方法和推广的Poincaré-Birkhoff扭转定理以及Poincaré-ohl不
我们在第二类超Cartan域 YⅡ(2,p;K)={ω∈C2,Z∈RⅡ(p):|ω|2K0} 上进行研究,这里RⅡ(p)表示华罗庚意义下的第二类Cartan域,det表示行列式,p为自然数,我们得到两个主要结果: 1.给出了当K=p2+p+2/2(p+1)时,YⅡ(2,p;K)的完备Einstein-Kahler度量的显表达式。 2.给出了在该
本文给出了一个只需要连续domain本身性质的子domain的内蕴定义,并证明它与传统的用连续映射定义的子domain的等价性。同时讨论了在此定义下子domain的代数性质,拓扑性质及其在解domain方程中的应用。
本文主要讨论Kahler流形上复结构的调和形变(看定义1.4.2),我们这里的一个调和形变本质上是满足如下方程组的一个解对于调和形变φ∈C0,1∞(X,T),我们已经有(?)*φ=0,那么在什么时候φ是一个取值T的调和(0,1)-形式(即△″φ=0)。本文的第一部分就是来回答这个问题,文中得到一类Kahler流形上的调和形变是取值T的调和(0,1)-形式的充分条件,本文的第二部分是把加在这类Kah
本文考虑第三类超Cartan域 YⅢ(2, q; K)={ω∈C2,Z∈RⅢ(q):|ω|2K0}, 这里RⅢ(q)表示华罗庚意义下的第三类Cartan域,因而Z是q阶斜对称方阵,det表示行列式,(?)表示Z的共轭,上标T表示矩阵的转置,q≥2为自然数。主要结果是给出了当K=q2-q+2/2(q-1)时,YⅢ(2,q;K)的完备的Einstein-Ka