论文部分内容阅读
增程式电动汽车(Extended-Range Electric Vehicle简称E-REV),是以电能为主要驱动能源,发动机为辅助动力源的一种新型电动汽车。其动力系统主要由蓄电池和小型发电机组组成。在日常行驶时,E-REV类似于纯电动汽车,发动机完全关闭,处于纯电动模式,该模式完全可以满足城市日常上下班行驶需求而不需要启动发动机。而在蓄电池荷电状态(State of charge,简称SOC)达到较低水平时,发动机启动作为主动力源,补充车辆行驶所需的电能,多余的电能对动力电池进行充电。增程式电动汽车的参数匹配对整车性能具有至关重要的作用,动力传动系统部件参数的优化匹配可以使各部件运行在最佳工作区域,提高整车能源利用率。通过对整车动力性、经济性及排放性能进行仿真分析,可以验证参数匹配和控制策略的合理性、有效性,缩短车型的开发周期,节约成本,充分发挥增程式电动汽车的优点。本文以参数匹配和性能仿真为重点,对比分析了增程式电动汽车与现阶段的各种新能源汽车的特点,并对增程式电动汽车的增程器结构进行了分析,根据动力性能要求,对动力传动系统关键零部件进行选型和匹配计算。根据增程式电动汽车的运行特点、动力性和经济性的要求,制定了增程式电动汽车的控制策略。纯电驱动与增程模式的切换采用基于SOC值的逻辑门限控制策略,增程模式下采用恒功率和功率跟随相结合的控制策略,根据蓄电池SOC和需求功率,将增程模式划分为六个工作状态。在AVL-Cruise软件中进行整车建模,同时在模型中设置Matlab控制模块,在Matlab/Simulink软件中进行控制模型的搭建,并在Sateflow中建立了不同工作模式下的状态转换流程图,根据模型编写DLL文件,实现了模型在Matlab/Simulink与Cruise中的联合仿真。仿真结果表明,参数匹配结果满足整车的经济性和动力性设计要求,制定的能量分配控制策略能够有效地提高整车的经济性能,本课题为增程式电动汽车的开发提供了有效的参考。