论文部分内容阅读
热固性树脂基复合材料具有许多优异的性质,如耐高温、硬度大、耐化学试剂、尺寸稳定性好等,广泛应用于防护涂料、胶粘剂、浇铸材料、增强塑料等领域。热固性树脂基复合材料的性能与其分子结构密切相关,而分子结构在很大程度上取决于树脂体系以及与固化过程有关的固化温度、固化时间、固化程度等因素。所以,为了开发高性能热固性树脂基复合材料,必须对热固性树脂的固化过程进行有效监测,研究树脂体系和固化工艺对树脂固化过程和固化度的影响。
利用交流阻抗谱监测环氧/多元胺体系和环氧/酸酐体系的固化过程,提出以低频阻抗为变量的固化度估算式结合等效电路,首次对热固性树脂的固化过程进行了全面分析,考察了固化剂、促进剂、温度等对固化过程的影响。同时,利用DSC对交流阻抗谱的监测结果进行验证。结果表明,两种技术的监测结果具有很好的一致性。在此基础上,环氧浇铸试样的固化工艺进行了优化。结果显示,由三步升温固化方案(80℃/60min+120℃/10min+160℃/5min)制备的环氧基浇铸试样的固化度为98.0%,抗拉强度为72.3MPa,性能最优。与恒温固化方案(120℃)相比,此浇铸试样的抗拉强度增加了23%。
制备了糠酮环氧/聚苯胺(PANI)纳米线防护涂层,利用电化学交流阻抗谱(EIS)监测了该涂层在酸、碱、盐溶液中的降解过程,结合等效电路模拟,跟踪了与涂层结构和耐蚀性能有关的各项参数在降解过程中的变化。根据XPS分析结果和涂层各项性能的测量结果,对PANI纳米线的添加量进行了优化。结果表明,适量添加PANI能增大涂层的附着力,促使碳钢表面产生致密的钝化层,有效延缓了糠酮环氧基涂层的老化降解,并且PANI添加量为1.0%的EMFA/PANI-1.0涂层的综合性能最优。
制备了多组环氧/火山灰微粒(TMP)和环氧/玄武岩鳞片(BMP)防护涂层,利用EIS监测了环氧涂层在温度冲击剧烈的环境下和高浓度盐溶液中的降解过程,考察了TMP和BMP对涂层耐蚀性和老化降解过程的影响。结果表明,TMP和BMP阻止了环氧涂层内部微观裂纹的延展,明显改善了环氧涂层在-80~230℃内温度冲击下的抗温冲性能,有效延缓了环氧涂层在该环境下的老化降解。并且,BMP对延缓E51/T31涂层在盐溶液中老化降解的效果最显著。
综上所述,交流阻抗谱既能有效监测热固性树脂的固化过程,也能有效监测热固性树脂基材料的老化降解过程,为筛选配方、优化固化工艺、延缓老化降解、预测使用寿命提供非常有价值的理论依据。
利用交流阻抗谱监测环氧/多元胺体系和环氧/酸酐体系的固化过程,提出以低频阻抗为变量的固化度估算式结合等效电路,首次对热固性树脂的固化过程进行了全面分析,考察了固化剂、促进剂、温度等对固化过程的影响。同时,利用DSC对交流阻抗谱的监测结果进行验证。结果表明,两种技术的监测结果具有很好的一致性。在此基础上,环氧浇铸试样的固化工艺进行了优化。结果显示,由三步升温固化方案(80℃/60min+120℃/10min+160℃/5min)制备的环氧基浇铸试样的固化度为98.0%,抗拉强度为72.3MPa,性能最优。与恒温固化方案(120℃)相比,此浇铸试样的抗拉强度增加了23%。
制备了糠酮环氧/聚苯胺(PANI)纳米线防护涂层,利用电化学交流阻抗谱(EIS)监测了该涂层在酸、碱、盐溶液中的降解过程,结合等效电路模拟,跟踪了与涂层结构和耐蚀性能有关的各项参数在降解过程中的变化。根据XPS分析结果和涂层各项性能的测量结果,对PANI纳米线的添加量进行了优化。结果表明,适量添加PANI能增大涂层的附着力,促使碳钢表面产生致密的钝化层,有效延缓了糠酮环氧基涂层的老化降解,并且PANI添加量为1.0%的EMFA/PANI-1.0涂层的综合性能最优。
制备了多组环氧/火山灰微粒(TMP)和环氧/玄武岩鳞片(BMP)防护涂层,利用EIS监测了环氧涂层在温度冲击剧烈的环境下和高浓度盐溶液中的降解过程,考察了TMP和BMP对涂层耐蚀性和老化降解过程的影响。结果表明,TMP和BMP阻止了环氧涂层内部微观裂纹的延展,明显改善了环氧涂层在-80~230℃内温度冲击下的抗温冲性能,有效延缓了环氧涂层在该环境下的老化降解。并且,BMP对延缓E51/T31涂层在盐溶液中老化降解的效果最显著。
综上所述,交流阻抗谱既能有效监测热固性树脂的固化过程,也能有效监测热固性树脂基材料的老化降解过程,为筛选配方、优化固化工艺、延缓老化降解、预测使用寿命提供非常有价值的理论依据。