【摘 要】
:
老龄飞机易产生多位置损伤(multiple site damage,MSD),其裂纹扩展速度较快,临界裂纹尺寸较短,对飞机结构安全具有较大的威胁,对飞机结构损伤容限设计与评估带来了新的挑战。飞机机身环向对接结构采用大量的铆钉连接,在疲劳载荷作用下易产生MSD。开展含MSD铆接对接结构疲劳寿命预测研究可为对接结构的抗疲劳设计与疲劳评估提供支持。应力强度因子(stress intensity fact
论文部分内容阅读
老龄飞机易产生多位置损伤(multiple site damage,MSD),其裂纹扩展速度较快,临界裂纹尺寸较短,对飞机结构安全具有较大的威胁,对飞机结构损伤容限设计与评估带来了新的挑战。飞机机身环向对接结构采用大量的铆钉连接,在疲劳载荷作用下易产生MSD。开展含MSD铆接对接结构疲劳寿命预测研究可为对接结构的抗疲劳设计与疲劳评估提供支持。应力强度因子(stress intensity factor,SIF)分析是含MSD结构的裂纹扩展与寿命预测的基础和关键,传统的基于二维有限元的分析方法无法考虑铆钉变形、预紧力、次弯曲等因素,难以反映连接件复杂的三维应力应变特性。本文针对含MSD对接结构寿命预测多位置损伤问题,采用有限元法建立了含MSD对接结构的三维有限元模型,研究了不同损伤模式、设计构型、铆钉类型、边界条件等因素对裂纹尖端SIF分布特性以及随裂纹长度的变化规律的影响。结果表明,孔边裂纹主要是Ⅰ型裂纹;由于次弯曲效应,三维裂纹尖端的SIF从外表面到内表面逐渐增加;MSD裂纹之间具有较强的相互作用;SIF随对接板厚度增加呈先增加后降低的趋势;采用埋头铆钉会使SIF值增加,反翘曲约束能显著降低SIF沿厚度方向的变化梯度。开展了铆接对接结构疲劳试验,并采用裂纹监控设备获得了裂纹形貌及裂纹尖端位置随加载循环的变化过程。基于含MSD损伤三维有限元SIF分析,结合Paris公式、塑性区连通准则、净截面失效准则,建立了含MSD损伤对接结构裂纹扩展寿命预测方法,并与试验结果进行对比,结果吻合较好。针对不同对接修理构型的疲劳和裂纹扩展寿命分析,提出了疲劳与裂纹扩展寿命快速评估方法。考虑摩擦及铆钉预紧力,基于三维有限元分析结果得到了铆钉钉载随孔边裂纹长度变化的函数表达式。采用权函数法提出了孔边裂纹应力强度因子快速分析方法,并建立了相应的裂纹扩展寿命分析方法。分析结果表明:不同修理构型寿命差异较大的原因是头排铆钉钉载差距较大;增加铆钉排数和阶梯状布置加强板可降低头排铆钉钉载;减小头排铆钉钉载可显著提高疲劳寿命,但对裂纹扩展寿命改善效果较小。
其他文献
人脸表情识别是计算机视觉的一个热点研究方向,该技术可以被广泛地应用于人机交互、疲劳驾驶检测、医疗、安防、教育等领域。随着深度学习的出现和发展,卷积神经网络已经更多地被应用于人脸表情识别领域。相比于传统特征提取方法,深度学习方法能够提取图像高层语义特征,获取有表达力的特征,从而达到更高的表情识别准确率。然而,目前已有卷积神经网络表情识别方法多有参数量大、计算成本高的问题。针对卷积神经网络的不足,本文
高速公路上的烟火、非机动车和抛洒物事件,极大地影响了行驶安全。目前高速公路监控中心的工作人员需人工值守监视器,人为发现交通事故和危险隐患,无法通过有效的监控手段对海量外场设备的运行情况进行实时地监控与跟踪。当前对高速公路异常事件的检测方法,在检测准确率和检测速度方面有所欠缺,离实际应用还有一定距离。本文针对高速公路实际情况,研究和实现了高速公路烟火、非机动车和抛洒物事件检测算法。本文的主要内容如下
持续安全是民航强国建设的三大核心之一。探索并总结中国民航保持长周期安全运行记录背后的成功经验,确定影响民航持续安全运行诸多因素中的关键成功因素,通过对关键少数因素的管控,不但能够促进行业持续安全运行,同时能够更加高效的配置资源,提升管理效率。首先,明晰了持续安全关键成功因素的内涵,基于扎根理论的三级编码过程对民航行业专家的调研访谈记录、近十年中国民航安全工作报告、民航企事业单位安全工作报告、民航的
可控飞行撞地事故是仅次于飞行失控事故的第二大致命事故类型,常常造成机毁人亡的严重后果。因此,被国际民航组织认为是导致商用飞机机体坠毁及人员伤亡事故的“头号杀手”。当前常用的单一事故分析模型难以全面识别事故致因,因此需要利用系统分析模型,并辅以人为因素模型进行补充,识别出导致可控飞行撞地事故发生的危险源及其关键风险,同时对关键风险提出相应的干预措施进行风险管控。首先,构建了基于系统理论的致因分析方法
广域信息管理系统(System Wide Information Management,SWIM)是下一代空中交通管理(Air Traffic Management,ATM,简称:空管)系统的基础信息网络,负责海量多源异构空中交通管理业务数据的传输和共享。其中,SWIM基础设施层采用全新互联网架构—信息中心网络(Information-Centric Networking,ICN),根据命名数据网
随着卷积神经网络的快速发展,面向真实场景的目标检测技术已得到了广泛研究。尽管当前基于深度学习的目标检测算法取得了显著效果,但是检测模型的有效训练通常需要大量有标签数据。相较于通用场景目标检测,密集场景与医学场景下的特定检测任务对数据的标注有更为严格的要求,因此标注的获取更为不易。为了利用无标签数据进行学习以减轻对有标签数据的依赖,本文探索了两种特定场景下基于半监督学习的目标检测算法。(1)针对密集
随着经济与社会的发展,在大数据时代,全局优化问题将会变得越来越复杂,具体表现为优化问题维度(优化变量)的急剧增加,这类问题被称为大规模优化问题(LargeScale Optimization Problem,LSOP)。传统的进化计算(Evolutionary Computation,EC)算法在求解LSOP时很容易过早地陷入局部最优而导致性能急剧下降。因此,如何设计和改进EC算法来高效地求解LS
联邦学习(Federated Learning,FL)是一个适用于移动计算中保护隐私的协作学习框架,其核心思想是在联合训练模型时,参与训练的多方用户设备无需上传原始数据,只需上传自身模型。在FL中,用户设备和服务器之间的通信成本优化问题受到学术界的广泛关注。本文将结合多任务学习、量化压缩、机器学习优化算法、自适应调整等对FL的个性化任务学习和用户选择策略进行研究,主要工作包括:(1)提出一个多项个
由于飞机货舱的密闭性,因此在飞行工作中驾驶员不可能进入到飞机货舱内。根据相关适航条款规定该类不易接近的舱室必须安装火灾探测系统,且在发生火灾后必须在规定时间内给出报警指示。根据美国联邦航空局FAA技术中心的数据统计发现现用烟雾探测器存在高误报率问题。随着民航运输业的发展,飞机货舱要求具备通风的能力,从而引起货舱内火灾烟雾流场变化,致使对火灾烟雾探测器的位置和响应时间产生严重影响。因此针对通风货舱火
如何有效减少空中危险接近事件,进而预防空中碰撞事故的发生一直是安全管理中的核心工作。客观、高效地寻找空中危险接近事件发生的原因和规律,并明晰各个致因因素之间的作用关系、重要性等,可以帮助安全管理人员认识事件发生的机理,针对薄弱环节开展精准化的防控,进而实现减少空中危险接近事件发生的目的。首先,构建了基于文本挖掘的空中危险接近事件致因因素识别框架,利用建立的空中危险接近事件停用词库和自定义词典对空中