论文部分内容阅读
在机器视觉技术对水果表面颜色检测和自动分级过程中,水果图像质量直接影响最终的检测与分级结果。由于机器视觉系统硬件设备的局限性及光照环境引起的图像色度失真不可避免,应采用适当的校正模型予以校正。本文主要针对图像的色度失真,研究了机器视觉系统的色度失真规律,建立了色度失真校正模型,并应用于水果颜色分级,验证了色度失真校正模型的有效性。主要研究内容和研究结果如下: 1、综述了利用机器视觉技术进行水果品质无损检测和自动分级的国内外研究进展,并指出了国内外同类研究中所存在的问题。 2、建立并完善了适合本研究的机器视觉系统。该系统由MeterⅡ/MC(Matrox.Inc.)图像采集卡、TMC-7DSP(PULNIX)CCD及6支F40BX/840(GE)荧光灯组成。 3、以平面色卡为研究对象,通过比较机器视觉系统与色差计测量所得色度值,分析了机器视觉系统的图像色度失真规律,并建立了色度失真校正模型。 4、对27个平面色卡在3个不同位置作对比研究,建立了平面色卡色度失真校正模型:0位置:y0=1.0318x0-3.3828,模型相关系数R2=0.9817;1位置:y1=1.0336x1-2.8485,模型相关系数R2=0.9859;2位置:y2=1.0304x2-2.2285,模型相关系数R2=0.9890。其中,y0、y1、y2和x0、x1、x2分别是三个位置校正后与校正前的色度。 5、分别在上述三个位置采集10种颜色的球面图像,验证了在本研究所用机器视觉系统内,物体表面曲率对色度失真基本没有影响,因此,对于球面物体的色度失真,可直接应用相应位置的平面色卡色度失真校正模型进行校正。此研究结论对于其它机器视觉系统的色度校正有一定的借鉴意义。 6、以HSV颜色模型中色度值为指标,研究了水果表面的色度分布范围在35°-80°之间,把色度按10°划分成五个区域。分别以[35°,45°]、[34°,44°]和[36°,46°]区间内色度累计频度作为着色依据进行颜色分级,发现[36°,46°]色度区间计算机分级与人工分级的结果一致度最好。 7、用与水果相应位置的色度失真校正模型对水果表面色度进行校正后,在[36°,46°]区间内,校正后水果一、二、三等及等外品颜色分级的正确率分别为100%、75.00%、75.00%、100%,而校正前分别为71.43%、73.33%、46.67%和100%。从而验证了机器视觉系统色度失真校正模型和方法的有效性。