论文部分内容阅读
由于近年来全球范围的石油能源的短缺和全球变暖导致的极端天气带来的巨大影响,易获得的生物质作为可替代型能源越来越受到关注。微生物燃料电池作为利用电化学活性微生物作为催化剂的产电装置,能将生物质中有机物的化学能直接转化为电能。相比传统的间接能源转化形式,微生物燃料电池这种从原料直接转化电能的方式在理论上将会有更高的能量效率。然而,在实际应用中由于存在诸多限制因素微生物燃料电池产生的电功率输出还停留在较低的水平,有待进一步的优化以提高微生物燃料电池的整体性能。以乳酸盐作为电子供体和电极作为电子受体在微生物燃料电池内进行富集,从厦门近海样品中共筛选得到五株产电菌。通过在微生物燃料电池中的产电验证,所有的菌株均具有良好的产电性能。通过16S rRNA和gyrB基因序列的分析以及DNA-DNA杂交,将菌株S1、S5和EP1在种属上分别鉴定为Shewanella decolorationis, Shewanella aquimarina和Shewanella marisflavi。DNA-DNA杂交显示S2和S4属于同一种内两菌株,以S4作为模式菌株,综合系统发育分析和表型特征数据,将该菌分类鉴定为Shewanella属内的新种。此外,利用Fe(III)氧化物作为电子受体从温泉口样品中分离到一株超嗜热菌。EP1菌株由多相分析鉴定为属于Shewanella marisflavi,能在高达1488 mM的离子强度下利用乳酸盐作为电子供体还原Fe(III)和产电。利用该菌在MFC中产电,离子强度为291 mM下测量到的最大电功率为3.6 mW/m2,离子强度提高到1146 mM时,最大电功率增长到9.6 mW/m2,提高167%。然而,进一步提高离子强度到1488 mM,最大电功率下降到5.2 mW/m2。对内电阻的定量分析发现将电极液离子强度从291 mM增加到1488 mM电极液电阻从1178 ?减小到50 ?。这些结果表明分离特异的微生物菌种能有效地提高微生物燃料电池的性能。