论文部分内容阅读
如今的便携式电子设备大都集成了免提接听、MP3音乐播放和DMB接收等多种功能,越来越迫切地需要高集成度高效的音频放大器。开关型D类功放相对于其他类型功放具有更高的效率但音质较差,且产生的电磁干扰(EMI)使其在有射频功能的设备例如手机,GPS和FM收音机中的应用受限。AB类线性音频功放音质好、没有开关噪声但在实际应用中效率较低。而带自适应电源的高效线性音频放大器是结合AB类和D类两种放大器优点的音频功放,它能根据输入音频信号的幅度大小自适应地改变功率级的电源电压以减小线性输出级功率管上的电压降从而提高效率、降低发热、减小元件体积。由于输出级仍采用AB类结构,不仅能保证输出信号线性度还能有效缓解EMI问题。因此,设计带自适应电源的低成本、高效率和高保真度的线性音频功放具有良好的市场前景和研究价值。本论文研究和设计了两种电源自适应变化的高效线性音频功放,一种是电源电压轨随输出信号幅度离散变化的G类音频功率放大器。通过研究音频信号幅度的分布特点,分析并推导了多级离散电源电压的取值、输入信号幅度分布与系统效率的关系,设计输出电压随音频信号幅度离散变化的电荷泵为线性功率放大器提供能量,自适应地降低了线性功放输出级的功耗。在自适应电源设计中,根据音频信号峰值与平均功率比值较大的特性,使电荷泵在轻负载下工作于PFM,以提高轻载下的效率;在重载下工作于电流控制模式,以减小电源的输出电压纹波。本文提出的带功率级分段的PFM控制方式可以根据检测的负载电流大小,自适应地改变电荷泵中功率管的尺寸用来减小传统PFM工作模式下的输出纹波,并且可以避免系统的工作频率进入音频范围。为了使单相电源下PMOS和NMOS功率管功耗同时得到优化,设计了正端增益加倍、负端增益压缩的信号预处理电路。设计了由两个三级运放构成的桥式结构的AB类线性放大器,并且将功率级与增益级电源分开以保证功率电源电压变化时放大器的稳定性。电路利用SMIC 0.18-μm 3.3V单阱CMOS工艺进行设计并投入流片。测试结果表明,该G类功放向8Ω负载提供功率在小于1.3W范围内时,THD+N性能均好于0.1%,并且在低功率范围内,相对于传统AB类的效率有大幅度的提高,非常适合于实际音频信号的放大。另外一种是电源随输出信号幅度连续可变的I类音频功率放大器。首先根据音频信号幅度的特点提出了单相电源I类线性音频功放的系统架构,并推导了这种音频功放的理论效率。在I类音频功放中,电源变换器采用降压型Buck结构,并且根据负载电流的大小自适应地工作于PWM和PFM两种模式以提高转换效率。当电流负载较大时,变换器工作在PWM模式,此时产生的电源电压跟随输出音频信号的幅度。引入平均电流反馈的PWM控制以扩展环路带宽,并在Buck变换器反馈输入端上加以改进解决了输出电压相位超前的问题。该I类音频功放电路是在SMIC 0.18-μm 3.3V单阱CMOS工艺下进行设计并投入流片。测试结果表明,该I类功放向8Ω阻性负载提供功率在小于360mW范围内时,THD+N性能均好于0.07%,最大效率达到82%。功率在90mW范围内时,效率比AB类提高了70%以上,且测试效率曲线与理论推导基本吻合。