基于支持向量机格斗评估系统的研究

来源 :东华大学 | 被引量 : 0次 | 上传用户:WIN_Hardy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
传统的士兵格斗训练以实战对抗方式为主,这种模式容易对士兵造成伤害,带来不必要的风险。且人工评判难以保证计分的客观性,训练周期不可控。随着智能行为识别技术的发展,自动化分析系统得以广泛运用于军事、工业、医学等领域,辅助人工进行过程化控制。
  本文研究的格斗评估系统基于立式人形搏击靶(下文简称搏击靶)平台,并配置了加速度和地磁传感器,实现对士兵格斗过程的监控与分析,对诸如拳击力量、方向、时间及攻击部位等指标进行测算,并给出格斗训练的评分。系统包含数据预处理、特征提取、支持向量机分类预测三部分。
  系统数据来源于安装在搏击靶的加速度和地磁传感器。加速度传感器提供三轴加速度信息,用于记录拳击过程对三轴加速度的影响。地磁传感器用于建立统一地磁坐标系,实现拳击击打方向的转义。系统实时采集每个传感器数据,用有限状态机FSM(Finite State Machine)进行波形分析、检测拳击事件,并通过加窗技术划分拳击事件区间。另外,提出改进的峰值检测方法,确定特征提取时间点,该方法检测准确度较高,不易受噪声干扰,能够提供准确可靠的拳击事件样本。
  支持向量机SVM(Support Vector Machine)多分类技术被用于攻击部位的判定,以一对一策略为基础,使用类别预选缩小候选类别范围,利用样本扩充与筛选两个步骤改善特征样本结构,提升样本描述程度。使用支持向量机概率模型,将概率权重投票代替简单投票策略,同时引入“相对竞争权重”技术以考虑二元分类器之间的竞争关系,优化分类模型。最后提出改进的距离计算方法来获得更准确的竞争权重。
  本文构建模型学习环境和系统运行环境,使用大量数据建立分类模型,同时分析系统评估效果,对指标测算结果、分类预测结果进行检验,试验结果证明该多分类策略能得到理想的分类效果,系统能够满足实际应用的实时性和精度要求。
其他文献
频率和波达方(Direction.of-Arrival,DOA)是反映辐射源特征的两大重要参数,对这两种参数的精确估计在电子侦察、目标定位等方面有着广泛的应用。传统的信号参数估计方法都是基于奈奎斯特采样框架。互质采样是近几年来出现的一种新的稀疏采样理论,主要包含时域的互质采样和空域的互质阵列,互质采样技术可以有效地降低系统对射频前端硬件的要求和后续的数据运算量,因此受到国内外的广泛关注。时域互质采
学位
短波技术至今已取得了长足的发展,随着电子与通信技术的不断推陈出新,传统的短波系统正在向高速化、宽带化转变。现今短波通信带宽最高已扩展至24kHz,宽带短波通信正逐渐成为短波领域研究的热点。  本文深入研究最新颁发的美军标MIL-STD-188-110C,并将其与较早的美军标MIL-STD-188-110B进行了比较,研究其改进的部分。在此基础上,研究了MIL-STD-188-110c波形在宽带条件
学位
水下传感器网络是由具有声学通信与计算能力的传感器节点构成的网络系统,其是开展海洋数据监测处理的重要技术手段。相对常见的海洋通信系统,水下传感器网络具有基础设施简单、节点体积微小和设备成本低廉等优势,在海洋数据采集、环境监控、资源勘测、地震与海啸监控、海洋军事科学、辅助导航、水下机器人和AUV控制等方面具备广阔的应用前景。传统的水下传感器网络极大的依赖硬件基础架构,存在应用和服务受限,管控和维护困难
对称密码是密码科学的重点研究内容,被广泛应用于数字签名、电子支付等领域。近年来,随着无线技术的不断发展,物联网正在逐步深入到人们生活的各个领域中,但由于计算处理设备容量有限,传统的密码算法不能有效地保证其中的数据安全。轻量级对称密码正是因此应运而生,它通过改变算法中所使用的一些组件来保证数据安全,具有分组长度短、结构简单、资源消耗少等特点。然而,在实际应用中,轻量级对称密码算法的硬件载体可能会受到
随着科技和文化的发展,服装已不再是过去保暖的工具,它更是展现自我的方式。如今面对海量的服装数据,传统的服装推荐虽能达到良好的推荐效果,但由于过分依赖用户历史行为数据而经常出现冷启动和数据稀疏问题,同时因为忽略上下文环境,导致推荐结果达不到用户特定场景下的需求。因此,对服装个性化推荐的研究变得十分有意义。  知识图谱的本质是语义网络,它揭示了世间万物之间的关系。而服装本身自带了诸多属性和知识,但目前
学位
随着光伏发电提供的电量在世界总电量中的比重逐年增加,光伏发电在日常生活中所占的地位也越来越重要,这就要求光伏发电系统有更高的可靠性和安全性,同时,也对光伏发电系统中的主要电力设备——光伏逆变器的可靠性提出了更高的要求,一旦光伏逆变器发生故障而没有及时的诊断出来并将以处理,将会造成不可避免的重大损失。因而及时的故障诊断和定位是一个亟待解决的问题。基于对大量的运维数据的分析,可以发现实际运营中产生的光
糖尿病是一种常见的慢性病,据世卫组织发布的2016年公报统计,中国共有约1.1亿糖尿病患者和近4亿糖尿病前期人群。除了患者人数众多,糖尿病还是一种难以根治的终身性代谢性疾病,且其并发症很可能威胁到患者生命,所以需要尽早预防和及时控制。在糖尿病的临床治疗过程中,每名患者都需要不定期地多次去医院进行诊疗,治疗周期长、治愈较困难,导致了糖尿病专科领域的医生数量与患者数量严重失衡,因此,如果能够对糖尿病临
电子病历记录了患者在检查与治疗疾病过程中产生的重要临床数据,包含大量的医疗知识,通过挖掘和利用这些知识对于医疗健康事业的发展有重要作用。但是,目前大部分电子病历都以非结构化的文本形式存储,一是难以从这些杂乱、冗余及高复杂的文本数据直接获取规范并有价值的数据;二是无法直接应用人工智能算法去进一步挖掘分析。因此,电子病历的结构化问题成为人工智能时代研究的热点,在医疗领域中最重要的工作主要集中在实体识别
学位
在信息科技技术快速发展带动下,社交网络也在以前所未有的规模进行发展,对于社交网络使用的用户数量也在与日俱增。大量的用户信息给予了社交网络分析极大地便利,研究者对社交网络数据进行分析可以得到很多有用的信息。用户在使用社交网络技术的过程中,被动或者主动的将自己的个人隐私或与其他用户之间的关系等各种敏感信息公之于众。这些敏感信息的泄露对于用户造成很大的麻烦甚至是经济上的损失。因此对于社交网络中用户的隐私
学位
在当今大数据时代背景下,数据质量直接影响相关任务的有效性。数据质量专家估计,错误的数据可能会使企业损失其系统执行预算总额的10%到20%,并且一个项目的执行可能需要花费40%到50%的项目预算在数据清洗中。数据清洗是一个耗时,耗力和繁琐的过程。数据质量的好坏直接影响企业决策和科研结果的正确性和有效性,因此,研究者提出了多种数据清理的方法,以便(半)自动地识别错误,并在可能的情况下纠正它们。  在过
学位