【摘 要】
:
多目标跟踪技术与行人属性识别技术是计算机视觉领域中的两个重要分支,已经成功应用于智能安防、商业分析等领域。然而,多目标跟踪技术与行人属性识别技术往往是独立进行的,由于两者没有共享网络权重,因此存在参数量大、推理速度慢的问题。本文针对此问题,将多目标跟踪网络与行人属性识别网络进行集成,提出了多目标跟踪与角度识别一体化网络。在此基础上,本文将注意力机制引入多目标跟踪与角度识别一体化网络,提高了一体化网
论文部分内容阅读
多目标跟踪技术与行人属性识别技术是计算机视觉领域中的两个重要分支,已经成功应用于智能安防、商业分析等领域。然而,多目标跟踪技术与行人属性识别技术往往是独立进行的,由于两者没有共享网络权重,因此存在参数量大、推理速度慢的问题。本文针对此问题,将多目标跟踪网络与行人属性识别网络进行集成,提出了多目标跟踪与角度识别一体化网络。在此基础上,本文将注意力机制引入多目标跟踪与角度识别一体化网络,提高了一体化网络角度识别的精度;改进了新轨迹的初始化方法,将多目标跟踪与角度识别一体化方法改进为了特定行人跟踪与角度识别方法。最后,为方便用户使用,本文实现了基于特定行人跟踪与角度识别方法的原型系统。具体工作如下:1.提出多目标跟踪与角度识别一体化方法。由于将多目标跟踪网络与行人属性识别网络进行级联的方法存在推理时间过长的问题,本论文将多目标跟踪网络与行人属性识别网络进行集成,提出了多目标跟踪与角度识别一体化网络,并通过实验证明该方案是一个可行的方案。2.对多目标跟踪与角度识别一体化方法进行改进。本论文将CBAM注意力机制引入一体化网络,在牺牲较少时间的情况下提高了一体化网络角度识别的精度。此外,本论文改进了新轨迹的初始化方法,将多目标跟踪与角度识别一体化方法改进为了可以针对特定行人进行跟踪与角度识别的方法。3.对基于特定行人跟踪与角度识别的Web系统进行设计与实现。本论文对基于特定行人跟踪与角度识别的Web系统进行了系统概要设计、数据库设计、系统详细设计,并结合开发工具对Web系统进行了功能实现与系统测试。系统测试结果表明,该Web系统各模块之间的功能以及模块之间的对接正常,满足系统设计的预期要求。
其他文献
为分析盾构隧道施工期各因素对管片上浮错台的影响,基于盾构隧道施工期的受力模式拟定了隧道直径、围岩条件、覆土厚度、浆液凝固时间、浆液密度、盾构掘进速度及盾尾间隙等7个主要影响因素,分别建立了盾构隧道施工期上浮分析模型与管片错台量计算模型,分析了施工期各因素影响下盾构隧道上浮错台量的变化规律。进一步地,结合现场监测试验结果,验证了施工期管片上浮错台的现象与规律,得出主要结论如下:(1)地层刚度减弱、浆
近年来,三维人脸模型在虚拟现实、游戏、动画、医疗等领域应用日渐广泛,但是三维人脸模型的获取依赖于专业人员手工制作或使用专业设备进行采集,基于深度学习的三维人脸重建方法因此成为热门研究课题,但是目前为止重建精度仍不够高。表情驱动技术是人脸模型在诸多领域应用的基础,但表情驱动通常使用的Blendshape模型需要专业人员手工制作几十个表情基模型,过程较为耗时,不同的应用场景对表情驱动方案要求也有所不同
移动边缘计算作为一种新兴的计算范式,将计算资源下放至距离用户更近的边缘节点,可以为用户提供更便利的服务。但是由于用户的移动特性,用户在移动的过程中可能存在时延增加甚至服务中断等一系列问题。因此,研究有效的服务迁移策略可以提高服务质量和用户体验。本文主要从迁移决策与迁移路径两个方面展开研究,取得的研究成果如下:1.针对现有的服务迁移决策只考虑到用户在某一位置时是否进行服务迁移的问题,本文引入用户之前
近年来,伴随着对抗性机器学习的深入研究和探索,深度学习图像分类模型面临着不可忽视的安全问题:攻击者利用生成的对抗样本欺骗分类模型,导致模型给出错误的分类结果。这一问题目前已经严重威胁到众多领域的正常发展。安全评估作为一种安全防御手段,可以及时发现模型弱点,进而对模型做出优化,增强模型遭遇对抗攻击时的鲁棒性,因此安全评估可以从预防的角度缓解深度学习图像分类模型面临的安全问题。然而,面对快速发展的对抗
移动边缘计算通过在网络边缘部署大量服务器,为用户提供低时延、高可靠性服务的同时也在一定程度上解决了应用激增带来的资源短缺问题。随着越来越多的应用向网络边缘迁移,边缘服务器的部署和资源调度问题受到了极大的重视。因此,本文首先研究了协作式边缘服务器部署策略;在此基础上,研究了面向快速响应的资源调度策略。具体的研究成果如下:1.针对现有的边缘服务器部署策略未充分考虑服务器间协作的问题,本文根据基站与边缘
用超速离心方法从感染流行性出血热(EHF)病毒的细胞培养液中浓缩和纯化了A9、Chen、76-118、R22、L99 5株病毒,对5株病毒进行的SDS-PAGE均显示了此病毒的G1、G2和NP 3个结构蛋白。3株野鼠型病毒A9、Chen、76—118株的结构蛋白分子量相同,两株家鼠型病毒R22、L99株的结构蛋白分子量相同,但两个不同血清型病毒间有所不同。用放射免疫沉淀(RIP)分析了16株EHF
语文“生·动”课堂是以“生命”“生活”“生成”为语文教学的基础,以“主动”“互动”“灵动”为课堂呈现样态的教学主张。“生·动”课堂有利于学生语文素养的培育和学习力的提升,可以通过激发生命热情,提升文字体悟力;走进生活世界,提升认知迁移力;促进优质生成,提升创新思维力;设计活动方式,提升学习辐射力等举措获得灵动的教学效果,达成以语育人、以文化人的目标。
图像以简洁、直观的方式传递出巨大的信息量,对海量图像数据的管理和高效检索成为一个具有挑战性的问题。图像检索最重要的步骤是特征提取与特征编码,深度卷积神经网络具有强大的特征提取能力,但其提取的图像特征维度较高,特征的存储和计算开销较大。哈希学习将图像数据映射为二进制编码,显著减少了内存消耗且检索速度较快。近年来,越来越多的学者开始将深度学习与哈希学习相结合,基于深度哈希的图像检索成为一个热门方向。本
在计算机视觉领域,相较于人的指纹、虹膜等特征,人脸能够进行身份匹配且更易获得,因此人脸识别一直是当前研究的热点。近年来,大多数人脸识别算法基于数据驱动表现优异,然而在一些特殊应用场景中采集人脸多张样本是个难题。如在身份证管理系统、刑侦执法系统、护照验证和登记口身份识别等实际场景中,每个人的训练样本只能获得一张(摄像机拍摄的证件照图像),称这种情况为单训练样本约束。在单样本约束下,当测试人脸图像受到
随着生活中智能化的程度越来越高,机器学习逐渐应用到了现代智能化生产中。在机器学习当中,深度学习是一个重要的分支,其中卷积神经网络被广泛应用于计算机视觉领域的研究,其性能的优劣直接决定了相关任务的好坏。随着对卷积神经网络准确度要求越来越高,模型也变得越来越复杂,所需的硬件资源也越来越昂贵。近年来对卷积神经网络的研究从构建高准确率的大型卷积神经网络逐渐转向了如何构建更加实用高效的轻量级模型架构。研究轻