【摘 要】
:
全固态电池中锆酸镧锂固态电解质具备四方相及立方相两种石榴石结构,其中立方相石榴石结构固态电解质具有较高的锂离子电导率。与有机液态电解质相比,固态电解质具有较宽的电化学窗口,长循环充放电性能与倍率循环充放电性能稳定。但是固态电解质的环境稳定性较差,并且其与正极材料、负极材料组装全固态电池的匹配性尚需进一步研究。针对以上问题,本文首先对Li_7La_3Zr_2O_(12)固态电解质粉体及陶瓷的制备工艺
论文部分内容阅读
全固态电池中锆酸镧锂固态电解质具备四方相及立方相两种石榴石结构,其中立方相石榴石结构固态电解质具有较高的锂离子电导率。与有机液态电解质相比,固态电解质具有较宽的电化学窗口,长循环充放电性能与倍率循环充放电性能稳定。但是固态电解质的环境稳定性较差,并且其与正极材料、负极材料组装全固态电池的匹配性尚需进一步研究。针对以上问题,本文首先对Li_7La_3Zr_2O_(12)固态电解质粉体及陶瓷的制备工艺进行优化,在空气气氛中采用埋粉烧结工艺,获得粉体最佳煅烧温度为850 ~oC,陶瓷最佳烧结温度为1100
其他文献
随着化石能源的日益枯竭,新能源(尤其是可再生能源)的开发与利用成为未来发展的必然趋势。然而可再生能源具有间歇性和不稳定性的特点,迫切需要与之相匹配的储能设备(尤其是兼具高功率密度/能量密度和优良循环稳定性的电化学储能设备)来提高可再生能源的可控性和利用率。目前的解决办法是一方面开发全新的替代性储能装置(例如钠电池、锂硫电池、钾电池等),另一方面针对现有的技术(如超级电容器、锂电池、铅酸电池等)进行
随着射频(Radio Frequency,RF)能量收集(Energy Harvesting,EH)技术的发展,无线能量传输(Wireless Power Transfer,WPT)逐渐成为延长能量受限设备工作时长的更有前景的供能方式,也因此该技术在无线通信领域中得到了广泛的关注。目前在基于WPT的无线通信系统中,一个非常重要的应用是无线供能中继网络。在该网络中,中继或用户可作为能量源或者能量受限
超级电容器作为一种被广泛研究的新型储能器件,具有极佳的功率性能、优异的倍率特性和稳定的循环寿命。然而相较于传统的二次电池,较低的能量密度限制了超级电容器的规模化应用。因此从电极材料入手,通过合理的结构设计来制备高性能电极材料,进而提高器件的能量密度成为了未来超级电容器主要的发展方向。碳基纳米材料由于来源广泛、工艺简单、结构可控、导电性良好而被广泛应用于储能领域。然而碳材料在超级电容器储能方面的性能
波形板干燥器是压水堆核电站自然循环蒸汽发生器汽水分离装置中的两大关键部件之一,决定着蒸汽发生器出口蒸汽品质。当前核电工业单堆功率逐渐增大,为了保证在较高的蒸汽负荷下,蒸汽发生器仍能产生品质合格的蒸汽,须提高波形板干燥器的综合性能,充分理解干燥器分离特性与机理是优化其性能的前提。因干燥器内部的两相流动、分离、二次携带等物理现象非常复杂,现阶段其分离特性与机理并未完全明确,基于此,本文开展了相关的研究
2011年在日本福岛核事故给全球的核电行业敲响了警钟,使得美国、法国、德国等国家的核安全理念发生了重大的转变,将核电厂严重事故、应急和外部灾害事件及叠加灾害分析提上了研究的重点。我国国家核安全局立即启动了针对福岛核事故的应急响应,开展了一系列在建核电厂安全大检查,并进一步提出开展包括外部灾害事件在内的全范围概率安全分析(PSA)工作。应该吸取福岛事故的经验教训,重新思考核安全。对于这种小概率但是后
发展可再生能源是解决能源危机和全球变暖的可行方案之一,为实现可再生能源的大规模应用,需要开发清洁、高效和低成本的储能装置。超级电容器由于具有功率密度高、循环寿命长和充放电速率快等优点,被看作是极具潜力的储能装置。然而,能量密度较低的缺点严重制约了超级电容器的商业应用。因此,如何提高超级电容器的能量密度,同时保留高功率密度和长循环寿命的特性,是目前亟待解决的关键问题。针对这一问题,本论文采用简单的方
一百多年以来,科技革命和工业化进程推动人类文明取得巨大进步,对能源的需求日益增加,致使人们掠夺式开发地球资源。目前,自然界的化石能源危机已引起世界各国的关注。科学家们探索了风能、水电、地热等多种可再生资源的开发利用。太阳能具有分布广泛、清洁、可再生等特点,一直以来都被认为是最具前景的新能源之一。太阳能的利用主要分为光热、光电、光催化和光生物等,其中研究时间较长、应用最为广泛的就是基于光电效应的太阳
化石能源的逐渐枯竭和环境污染的日趋严峻,迫使人们使用可再生能源来代替传统的化石能源。对于新的能源结构的调整,要求有先进的能源转换和储存器件给予支持。超级电容器作为新兴的储能器件,具有较大功率密度和较长的循环寿命,已经在众多领域得到应用。超级电容器按照电极材料的种类可以分为双电层电容器和赝电容电容器。赝电容电容器拥有比双电层电容器高的能量密度,被认为是最具潜力的能量储存器件。但因较差的导电性和较低的
染料敏化太阳能电池(DSSCs)是近年发展起来的新型太阳能电池之一,其被称为第三代太阳能电池。从近些年DSSCs的研究进展来看,一方面在于如何从材料的选择和设计的角度去提升电池的光电转化效率,另一方面则集中于器件的组装特性研究。在DSSCs关键性材料的开发上,主要着力于找到更为合适的电解质材料、光电极材料等,来提升电池的光电转化效率和稳定性等关键参数。目前DSSCs使用的电解质材料主要是液态的电解
作为一种新型电化学能量转换器件,质子交换膜燃料电池(PEMFC)由于具有能量转换效率高、排放低和燃料丰富的优点,在新能源应用领域受到广泛的研究和关注。质子交换膜燃料电池大范围应用的主要挑战是其动力学缓慢的阴极反应,或者说是铂催化剂的低活性,并且因此导致了阴极的高铂担载量和高成本。因此,开发高活性的燃料电池阴极催化剂,是实现PEMFC商业应用的关键。有序结构的Fe Pt合金纳米颗粒具有相比于商业化催