骨修复用多孔镁合金的制备及其性能研究

来源 :东南大学 | 被引量 : 0次 | 上传用户:zhairui15
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
镁及镁合金因其优异的生物可降解性、生物相容性以及与人体骨骼相近的力学性能,近年来已成为一种极具潜力的骨组织工程支架材料。但现阶段,与人体松质骨结构相仿的多孔镁合金的制备工艺不稳定,仍然存在着高孔隙率与理想的力学性能难以同时满足的问题,并且多孔结构产生更大的比表面积使得活性本就较高的镁合金腐蚀速率进一步加快,这些都极大地阻碍了多孔镁合金作为骨组织工程支架将来在临床中的应用。针对上述问题,本课题采用负压渗流铸造法,以球形和方形的工业Na Cl为造孔颗粒,制备了具有不同孔结构的Mg-1.5Zn-0.2Ca镁合金支架,系统研究了孔隙形状对镁合金支架孔结构与力学性能的影响,随后研究了三种表面处理工艺对制备的镁合金支架的降解行为的影响,并对他们的抑菌性能进行了评价。通过本课题研究,可为可降解多孔镁合金在骨组织工程中的应用提供必要的数据支撑和理论指导。本文的主要研究结果如下:(1)由负压渗流铸造法分别制备了球形孔隙镁合金支架以及含50%方形孔隙+50%球形孔隙的镁合金支架,两种镁合金支架的孔隙结构与压缩力学性能均满足骨组织工程支架的要求,其中,球形孔隙多孔镁合金支架孔隙率为74.97%,比表面积为8.36mm2/mm3,主要孔径在450~600μm,连通孔径为150~200μm,压缩屈服强度为4.035MPa,压缩弹性模量为0.229GPa;含50%方形孔隙+50%球形孔隙的镁合金支架孔隙率为68.60%,比表面积为8.09mm2/mm3,主要孔径在450~600μm,连通孔径为36~260μm,压缩屈服强度为4.22MPa,压缩弹性模量为0.318GPa,两种支架在结构方面与人体松质骨保持较高的匹配度,另外渗透率模拟结果显示球形孔隙镁合金支架具有更高的开孔程度。(2)降解50h时,两种孔隙的多孔镁合金支架均完成了全降解。对镁合金支架分别进行了Mg F2、氟磷灰石和植酸钙三种膜层的处理,经表面处理后,镁合金支架的耐蚀性能得到了大幅提高,在Hank’s溶液中浸泡300h后,Mg F2和氟磷灰石膜层处理后的镁合金支架结构保持完整,支架表面仅有少量的腐蚀产物出现;而植酸钙膜层处理后的镁合金支架边缘发生溶解,大量腐蚀产物堵塞孔隙,通孔结构发生破坏。表面处理前后,球形孔隙镁合金支架因更大的比表面积耐蚀性均稍弱于含方形孔隙镁合金支架。(3)抑菌实验结果表明,表面处理前后镁合金支架抑菌率均随着浸提时间的延长而提高,其中Mg F2膜层抑菌性较弱,浸提72h才能达到90%的抑菌率,其他试样浸提24h就能达到该抑菌效果。
其他文献
离子电池近几年来作为储能设备不可或缺的一部分,但同时其电极材料存在着很多问题,特别是锂离子扩散系数低和电子传导能力弱这两个关键性的因素严重限制了锂离子电池的发展。对此,研究者已开展大量工作,尤其是计算材料学随着信息技术的发展以及理论体系的不断完善,已被广泛应用于预测材料的结构、电子性质、能量以及成键情况,从微观层面更好的阐明了材料的诸多性质。本论文采用常用电极材料缺陷调控手段,首先通过密度泛函理论
目标检测算法是计算机视觉领域中一个热门研究领域,其主要的应用是识别并定位场景中关键目标,这种检测技术已经有了很多成熟的应用,如视频监控,智能交通,图像检索,人机交互等领域。虽然目前基于深度学习的目标检测算法通过使用大型卷积神经网络实现了较高的检测精度,但其带来的巨大内存占用与计算资源消耗等缺点,使得模型难以部署在算力、功耗等方面受限的边缘和嵌入式设备上,也不易实现实时检测应用。针对以上问题,本文基
气浮法是环境工程领域去除含尘、含油废水的重要分离单元操作。本文针对一种装配有新型表面自吸气搅拌桨—长桨短叶片复合式搅拌桨(Long-Short Blades,LSB)和导流筒的气浮池,采用实验研究和数值模拟相结合的方法,研究了气浮池内气液两相流的水力学特性,以及在治理含尘废水领域的应用。论文首先采用高速摄像技术(HUT)研究了新型气浮池内的气泡分布特征(气泡大小与直径分布),同时利用气体质量流量计
为满足千米级超高层在高地震设防烈度下的抗震性能要求,东南大学与中建七局合作提出一种以格栅式双钢板-混凝土组合剪力墙为主要抗侧力构件的千米级巨框格栅式双钢板剪力墙体系,本文围绕格栅式双钢板剪力墙和千米级巨框格栅式双钢板剪力墙体系的抗震性能开展了研究,主要内容及成果如下:(1)建立了格栅式双钢板剪力墙有限元分析模型,并与课题组开展试验的结果进行对比,有限元计算得到的水平峰值承载力和破坏现象与试验结果吻
温度开裂是大体积混凝土面临的重大问题,通过掺入矿物掺合料和淀粉基水化温升抑制材料(Temperature Rise Inhibitor,TRI)可以有效降低水泥水化放热峰值(简称降峰效果),缓解集中放热,降低水化温升导致的混凝土开裂风险。为更好地将TRI运用在实际工程中,本文研究了TRI对纯水泥、水泥-粉煤灰/矿粉复合体系水化放热历程、抗压强度和凝结时间等宏观性能的影响规律;并通过TRI对水化程度
学前教育提前完成普及目标,普惠水平不断提高,人们对优质学前教育的期盼更迫切、更强烈。近日,教育部印发《幼儿园保育教育质量评估指南》,从办园方向、保育与安全、教育过程、环境创设、教师队伍5个方面提出了15项关键指标和48个考查要点,严禁用直接测查幼儿能力和发展水平的方式评估幼儿园保教质量,强化对幼儿园保育教育质量评估的科学规范引导。
期刊
近年来,随着物联网、人工智能、5G通信等信息技术的发展,具有性能稳定、可靠性好、集成度高的光子集成器件已成为各类新型光通信系统的技术基础,而硅光子集成器件不仅能满足大多数光通信系统,还可以与成熟的互补氧化物半导体制造工艺兼容,因此硅光子集成是光通信产业的热门话题之一。由于硅的间接带隙结构不能有效发光而使得硅光子集成面临巨大挑战,所以硅基异质集成激光器无论在学术界还是工业界都具有重要的研究意义。本文
锂离子电池具有高比能、长寿命、低自放电率和环境友好等优势,成为新能源汽车和可再生能源存储的理想电源,对能源和环境的可持续发展具有重要意义。然而,传统的石墨负极在能量密度和安全性等方面已经无法满足新能源产业的需求。因此,亟需开发兼具高能量密度和高安全性的新型锂离子电池负极材料。铁基化合物具有高的理论容量、安全的工作电位和丰富的资源,有望替代商业石墨成为下一代负极材料。然而,铁基化合物普遍存在电子导电
近年来,随着各类应用对带宽需求的急速增加,Internet流量呈指数增长,这对弹性光网络(EON)中频谱高效,灵活和可扩展性能提出了更高的要求。弹性光网络与光学正交频分复用(OFDM)的结合使网络提供商能够满足网络中异构带宽的需求。然而,异构网络资源间的相互耦合给网络资源调度带来了巨大挑战,因此,引入网络虚拟化技术成为了必然趋势。光网络虚拟化基于基础设施即服务的理念,促进了不同用户和应用程序之间的
建筑运行能耗作为建筑全生命周期能耗的重要组成部分,其在社会总能耗占较大的比重。因此在城市规划和建筑设计阶段以及后期运营维护阶段对建筑能耗进行有效地模拟预测,可以对规划、设计和运营进行正向反馈。现有建筑能耗模拟是以建筑单体为主的自下而上的模拟方法,这种方法无法应用于城市级、区域级的建筑能耗规划。本文针对现有建筑能耗模拟方法应对城市建筑能源需求的局限性,提出数据驱动模式的城市建筑能耗评估方法,并从技术